3,232 research outputs found

    Active Learning for Online Recognition of Human Activities from Streaming Videos

    Full text link
    Recognising human activities from streaming videos poses unique challenges to learning algorithms: predictive models need to be scalable, incrementally trainable, and must remain bounded in size even when the data stream is arbitrarily long. Furthermore, as parameter tuning is problematic in a streaming setting, suitable approaches should be parameterless, and make no assumptions on what class labels may occur in the stream. We present here an approach to the recognition of human actions from streaming data which meets all these requirements by: (1) incrementally learning a model which adaptively covers the feature space with simple local classifiers; (2) employing an active learning strategy to reduce annotation requests; (3) achieving promising accuracy within a fixed model size. Extensive experiments on standard benchmarks show that our approach is competitive with state-of-the-art non-incremental methods, and outperforms the existing active incremental baselines

    Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video

    Full text link
    Current approaches for activity recognition often ignore constraints on computational resources: 1) they rely on extensive feature computation to obtain rich descriptors on all frames, and 2) they assume batch-mode access to the entire test video at once. We propose a new active approach to activity recognition that prioritizes "what to compute when" in order to make timely predictions. The main idea is to learn a policy that dynamically schedules the sequence of features to compute on selected frames of a given test video. In contrast to traditional static feature selection, our approach continually re-prioritizes computation based on the accumulated history of observations and accounts for the transience of those observations in ongoing video. We develop variants to handle both the batch and streaming settings. On two challenging datasets, our method provides significantly better accuracy than alternative techniques for a wide range of computational budgets

    Context-Aware Query Selection for Active Learning in Event Recognition

    Full text link
    Activity recognition is a challenging problem with many practical applications. In addition to the visual features, recent approaches have benefited from the use of context, e.g., inter-relationships among the activities and objects. However, these approaches require data to be labeled, entirely available beforehand, and not designed to be updated continuously, which make them unsuitable for surveillance applications. In contrast, we propose a continuous-learning framework for context-aware activity recognition from unlabeled video, which has two distinct advantages over existing methods. First, it employs a novel active-learning technique that not only exploits the informativeness of the individual activities but also utilizes their contextual information during query selection; this leads to significant reduction in expensive manual annotation effort. Second, the learned models can be adapted online as more data is available. We formulate a conditional random field model that encodes the context and devise an information-theoretic approach that utilizes entropy and mutual information of the nodes to compute the set of most informative queries, which are labeled by a human. These labels are combined with graphical inference techniques for incremental updates. We provide a theoretical formulation of the active learning framework with an analytic solution. Experiments on six challenging datasets demonstrate that our framework achieves superior performance with significantly less manual labeling.Comment: To appear in Transactions of Pattern Pattern Analysis and Machine Intelligence (T-PAMI

    Energy-based Models for Video Anomaly Detection

    Full text link
    Automated detection of abnormalities in data has been studied in research area in recent years because of its diverse applications in practice including video surveillance, industrial damage detection and network intrusion detection. However, building an effective anomaly detection system is a non-trivial task since it requires to tackle challenging issues of the shortage of annotated data, inability of defining anomaly objects explicitly and the expensive cost of feature engineering procedure. Unlike existing appoaches which only partially solve these problems, we develop a unique framework to cope the problems above simultaneously. Instead of hanlding with ambiguous definition of anomaly objects, we propose to work with regular patterns whose unlabeled data is abundant and usually easy to collect in practice. This allows our system to be trained completely in an unsupervised procedure and liberate us from the need for costly data annotation. By learning generative model that capture the normality distribution in data, we can isolate abnormal data points that result in low normality scores (high abnormality scores). Moreover, by leverage on the power of generative networks, i.e. energy-based models, we are also able to learn the feature representation automatically rather than replying on hand-crafted features that have been dominating anomaly detection research over many decades. We demonstrate our proposal on the specific application of video anomaly detection and the experimental results indicate that our method performs better than baselines and are comparable with state-of-the-art methods in many benchmark video anomaly detection datasets

    pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video

    Full text link
    An increasing number of methods for background subtraction use Robust PCA to identify sparse foreground objects. While many algorithms use the L1-norm as a convex relaxation of the ideal sparsifying function, we approach the problem with a smoothed Lp-norm and present pROST, a method for robust online subspace tracking. The algorithm is based on alternating minimization on manifolds. Implemented on a graphics processing unit it achieves realtime performance. Experimental results on a state-of-the-art benchmark for background subtraction on real-world video data indicate that the method succeeds at a broad variety of background subtraction scenarios, and it outperforms competing approaches when video quality is deteriorated by camera jitter

    Continuous Adaptation of Multi-Camera Person Identification Models through Sparse Non-redundant Representative Selection

    Full text link
    The problem of image-base person identification/recognition is to provide an identity to the image of an individual based on learned models that describe his/her appearance. Most traditional person identification systems rely on learning a static model on tediously labeled training data. Though labeling manually is an indispensable part of a supervised framework, for a large scale identification system labeling huge amount of data is a significant overhead. For large multi-sensor data as typically encountered in camera networks, labeling a lot of samples does not always mean more information, as redundant images are labeled several times. In this work, we propose a convex optimization based iterative framework that progressively and judiciously chooses a sparse but informative set of samples for labeling, with minimal overlap with previously labeled images. We also use a structure preserving sparse reconstruction based classifier to reduce the training burden typically seen in discriminative classifiers. The two stage approach leads to a novel framework for online update of the classifiers involving only the incorporation of new labeled data rather than any expensive training phase. We demonstrate the effectiveness of our approach on multi-camera person re-identification datasets, to demonstrate the feasibility of learning online classification models in multi-camera big data applications. Using three benchmark datasets, we validate our approach and demonstrate that our framework achieves superior performance with significantly less amount of manual labeling

    NeuralNetwork-Viterbi: A Framework for Weakly Supervised Video Learning

    Full text link
    Video learning is an important task in computer vision and has experienced increasing interest over the recent years. Since even a small amount of videos easily comprises several million frames, methods that do not rely on a frame-level annotation are of special importance. In this work, we propose a novel learning algorithm with a Viterbi-based loss that allows for online and incremental learning of weakly annotated video data. We moreover show that explicit context and length modeling leads to huge improvements in video segmentation and labeling tasks andinclude these models into our framework. On several action segmentation benchmarks, we obtain an improvement of up to 10% compared to current state-of-the-art methods.Comment: CVPR 201

    Detection of Unknown Anomalies in Streaming Videos with Generative Energy-based Boltzmann Models

    Full text link
    Abnormal event detection is one of the important objectives in research and practical applications of video surveillance. However, there are still three challenging problems for most anomaly detection systems in practical setting: limited labeled data, ambiguous definition of "abnormal" and expensive feature engineering steps. This paper introduces a unified detection framework to handle these challenges using energy-based models, which are powerful tools for unsupervised representation learning. Our proposed models are firstly trained on unlabeled raw pixels of image frames from an input video rather than hand-crafted visual features; and then identify the locations of abnormal objects based on the errors between the input video and its reconstruction produced by the models. To handle video stream, we develop an online version of our framework, wherein the model parameters are updated incrementally with the image frames arriving on the fly. Our experiments show that our detectors, using Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs) as core modules, achieve superior anomaly detection performance to unsupervised baselines and obtain accuracy comparable with the state-of-the-art approaches when evaluating at the pixel-level. More importantly, we discover that our system trained with DBMs is able to simultaneously perform scene clustering and scene reconstruction. This capacity not only distinguishes our method from other existing detectors but also offers a unique tool to investigate and understand how the model works.Comment: This manuscript is under consideration at Pattern Recognition Letter

    Time Perception Machine: Temporal Point Processes for the When, Where and What of Activity Prediction

    Full text link
    Numerous powerful point process models have been developed to understand temporal patterns in sequential data from fields such as health-care, electronic commerce, social networks, and natural disaster forecasting. In this paper, we develop novel models for learning the temporal distribution of human activities in streaming data (e.g., videos and person trajectories). We propose an integrated framework of neural networks and temporal point processes for predicting when the next activity will happen. Because point processes are limited to taking event frames as input, we propose a simple yet effective mechanism to extract features at frames of interest while also preserving the rich information in the remaining frames. We evaluate our model on two challenging datasets. The results show that our model outperforms traditional statistical point process approaches significantly, demonstrating its effectiveness in capturing the underlying temporal dynamics as well as the correlation within sequential activities. Furthermore, we also extend our model to a joint estimation framework for predicting the timing, spatial location, and category of the activity simultaneously, to answer the when, where, and what of activity prediction

    LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing

    Full text link
    Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a single comparative study on supervoxel segmentation. To that end, we study seven supervoxel algorithms, including both off-line and streaming methods, in the context of what we consider to be a good supervoxel: namely, spatiotemporal uniformity, object/region boundary detection, region compression and parsimony. For the evaluation we propose a comprehensive suite of seven quality metrics to measure these desirable supervoxel characteristics. In addition, we evaluate the methods in a supervoxel classification task as a proxy for subsequent high-level uses of the supervoxels in video analysis. We use six existing benchmark video datasets with a variety of content-types and dense human annotations. Our findings have led us to conclusive evidence that the hierarchical graph-based (GBH), segmentation by weighted aggregation (SWA) and temporal superpixels (TSP) methods are the top-performers among the seven methods. They all perform well in terms of segmentation accuracy, but vary in regard to the other desiderata: GBH captures object boundaries best; SWA has the best potential for region compression; and TSP achieves the best undersegmentation error.Comment: In Review at International Journal of Computer Visio
    corecore