748 research outputs found

    Increasing throughput in IEEE 802.11 by optimal selection of backoff parameters

    Get PDF
    Engineering and Physical Sciences Research Council. Grant Number: EP/G012628/

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Analysis of DoS Attacks at MAC Layer in Mobile Adhoc Networks

    Get PDF
    ā€”Wireless network security has received tremendous attention due to the vulnerabilities exposed in the open communication medium. The most common wireless Medium Access Control (MAC) protocol is IEEE 802.11, which assumes all the nodes in the network are cooperative. However, nodes may purposefully misbehave in order to disrupt network performance, obtain extra bandwidth and conserve resources. These MAC layer misbehaviours can lead to Denial of Service (DoS) attacks which can disrupt the network operation. There is a lack of comprehensive analysis of MAC layer misbehaviour driven DoS attacks for the IEEE 802.11 protocol. This research studied possible MAC layer DoS attack strategies that are driven by the MAC layer malicious/selfish nodes and investigates the performance of the IEEE 802.11 protocol. Such DoS attacks caused by malicious and selfish nodes violating backoff timers associated with the protocol. The experimental and analytical approach evaluates several practical MAC layer backoff value manipulation and the impact of such attacks on the network performance and stability in MANETs. The simulation results show that introducing DoS attacks at MAC layer could significantly affect the network throughput and data packet collision rate. This paper concludes that DoS attacks with selfish/malicious intend can obtain a larger throughput by denying well-behaved nodes to obtain deserved throughput, also DoS attacks with the intend of complete destruction of the network can succee

    Multi-Round Contention in Wireless LANs with Multipacket Reception

    Full text link
    Multi-packet reception (MPR) has been recognized as a powerful capacity-enhancement technique for random-access wireless local area networks (WLANs). As is common with all random access protocols, the wireless channel is often under-utilized in MPR WLANs. In this paper, we propose a novel multi-round contention random-access protocol to address this problem. This work complements the existing random-access methods that are based on single-round contention. In the proposed scheme, stations are given multiple chances to contend for the channel until there are a sufficient number of ``winning" stations that can share the MPR channel for data packet transmission. The key issue here is the identification of the optimal time to stop the contention process and start data transmission. The solution corresponds to finding a desired tradeoff between channel utilization and contention overhead. In this paper, we conduct a rigorous analysis to characterize the optimal strategy using the theory of optimal stopping. An interesting result is that the optimal stopping strategy is a simple threshold-based rule, which stops the contention process as soon as the total number of winning stations exceeds a certain threshold. Compared with the conventional single-round contention protocol, the multi-round contention scheme significantly enhances channel utilization when the MPR capability of the channel is small to medium. Meanwhile, the scheme automatically falls back to single-round contention when the MPR capability is very large, in which case the throughput penalty due to random access is already small even with single-round contention

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC
    • ā€¦
    corecore