105,908 research outputs found

    Effects of Transport Delays of Manual Control System Performance

    Get PDF
    Throughput or transport delays in manual control systems can cause degraded performance and lead to potentially unstable operation. With the expanding use of digital processors, throughput delays can occur in manual control systems in a variety of ways such as in digital flight control systems in real aircraft, and in equation of motion computers and computer generated images in simulators. Research has shown the degrading effect of throughput delays on subjective opinion and system performance and dynamic response. A generic manual control system model is used to provide a relatively simple analysis of and explanation for the effects of various types of delays. The consequence of throughput delays of some simple system architectures is also discussed

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    Quantifying Operational Constraints of Low-Latency Telerobotics for Planetary Surface Operations

    Full text link
    NASA's SLS and Orion crew vehicle will launch humans to cislunar space to begin the new era of space exploration. NASA plans to use the Orion crew vehicle to transport humans between Earth and cislunar space where there will be a stationed habitat known as the Deep Space Gateway (DSG). The proximity to the lunar surface allows for direct communication between the DSG and surface assets, which enables low-latency telerobotic exploration. The operational constraints for telerobotics must be fully explored on Earth before being utilized on space exploration missions. We identified two constraints on space exploration using low-latency surface telerobotics and attempts to quantify these constraints. A constraint associated with low-latency surface telerobotics is the bandwidth available between the orbiting command station and the ground assets. The bandwidth available will vary during operation. As a result, it is critical to quantify the operational video conditions required for effective exploration. We designed an experiment to quantify the threshold frame rate required for effective exploration. The experiment simulated geological exploration via low-latency surface telerobotics using a COTS rover in a lunar analog environment. The results from this experiment indicate that humans should operate above a threshold frame rate of 5 frames per second. In a separate, but similar experiment, we introduced a 2.6 second delay in the video system. This delay recreated the latency conditions present when operating rovers on the lunar farside from an Earth-based command station. This time delay was compared to low-latency conditions for teleoperation at the DSG (≀\leq0.4 seconds). The results from this experiment show a 150% increase in exploration time when the latency is increased to 2.6 seconds. This indicates that such a delay significantly complicates real-time exploration strategies.Comment: 10 pages, 8 figures, Proceedings of the IEEE Aerospace Conference, Big Sky, MT. arXiv admin note: text overlap with arXiv:1706.0375

    A review of High Performance Computing foundations for scientists

    Full text link
    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and discuss essential aspects to take into account when running scientific calculations in computers.Comment: 33 page

    A user perspective of quality of service in m-commerce

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2004 Springer VerlagIn an m-commerce setting, the underlying communication system will have to provide a Quality of Service (QoS) in the presence of two competing factors—network bandwidth and, as the pressure to add value to the business-to-consumer (B2C) shopping experience by integrating multimedia applications grows, increasing data sizes. In this paper, developments in the area of QoS-dependent multimedia perceptual quality are reviewed and are integrated with recent work focusing on QoS for e-commerce. Based on previously identified user perceptual tolerance to varying multimedia QoS, we show that enhancing the m-commerce B2C user experience with multimedia, far from being an idealised scenario, is in fact feasible if perceptual considerations are employed

    Can small be beautiful? assessing image resolution requirements for mobile TV

    Get PDF
    Mobile TV services are now being offered in several countries, but for cost reasons, most of these services offer material directly recoded for mobile consumption (i.e. without additional editing). The experiment reported in this paper, aims to assess the image resolution and bitrate requirements for displaying this type of material on mobile devices. The study, with 128 participants, examined responses to four different image resolutions, seven video encoding bitrates, two audio bitrates and four content types. The results show that acceptability is significantly lower for images smaller than 168×126, regardless of content type. The effect is more pronounced when bandwidth is abundant, and is due to important detail being lost in the smaller screens. In contrast to previous studies, participants are more likely to rate image quality as unacceptable when the audio quality is high
    • 

    corecore