2,483 research outputs found

    Robust fulfillment of constraints in robot visual servoing

    Full text link
    [EN] In this work, an approach based on sliding mode ideas is proposed to satisfy constraints in robot visual servoing. In particular, different types of constraints are defined in order to: fulfill the visibility constraints (camera fieldof-view and occlusions) for the image features of the detected object; to avoid exceeding the joint range limits and maximum joint speeds; and to avoid forbidden areas in the robot workspace. Moreover, another task with low-priority is considered to track the target object. The main advantages of the proposed approach are low computational cost, robustness and fully utilization of the allowed space for the constraints. The applicability and effectiveness of the proposed approach is demonstrated by simulation results for a simple 2D case and a complex 3D case study. Furthermore, the feasibility and robustness of the proposed approach is substantiated by experimental results using a conventional 6R industrial manipulator.This work was supported in part by the Spanish Government under grants BES-2010-038486 and Project DPI2013-42302-R, and the Generalitat Valenciana under grants VALi+d APOSTD/2016/044 and BEST/2017/029.Muñoz-Benavent, P.; Gracia Calandin, LI.; Solanes Galbis, JE.; Esparza Peidro, A.; Tornero Montserrat, J. (2018). Robust fulfillment of constraints in robot visual servoing. Control Engineering Practice. 71(1):79-95. https://doi.org/10.1016/j.conengprac.2017.10.017S799571

    Adaptive Obstacle Avoidance for a Class of Collaborative Robots

    Get PDF
    In a human–robot collaboration scenario, operator safety is the main problem and must be guaranteed under all conditions. Collision avoidance control techniques are essential to improve operator safety and robot flexibility by preventing impacts that can occur between the robot and humans or with objects inadvertently left within the operational workspace. On this basis, collision avoidance algorithms for moving obstacles are presented in this paper: inspired by algorithms already developed by the authors for planar manipulators, algorithms are adapted for the 6-DOF collaborative manipulators by Universal Robots, and some new contributions are introduced. First, in this work, the safety region wrapping each link of the manipulator assumes a cylindrical shape whose radius varies according to the speed of the colliding obstacle, so that dynamical obstacles are avoided with increased safety regions in order to reduce the risk, whereas fixed obstacles allow us to use smaller safety regions, facilitating the motion of the robot. In addition, three different modalities for the collision avoidance control law are proposed, which differ in the type of motion admitted for the perturbation of the end-effector: the general mode allows for a 6-DOF perturbation, but restrictions can be imposed on the orientation part of the avoidance motion using 4-DOF or 3-DOF modes. In order to demonstrate the effectiveness of the control strategy, simulations with dynamic and fixed obstacles are presented and discussed. Simulations are also used to estimate the required computational effort in order to verify the transferability to a real system

    Robot Visual Servoing Using Discontinuous Control

    Full text link
    This work presents different proposals to deal with common problems in robot visual servoing based on the application of discontinuous control methods. The feasibility and effectiveness of the proposed approaches are substantiated by simulation results and real experiments using a 6R industrial manipulator. The main contributions are: - Geometric invariance using sliding mode control (Chapter 3): the defined higher-order invariance is used by the proposed approaches to tackle problems in visual servoing. Proofs of invariance condition are presented. - Fulfillment of constraints in visual servoing (Chapter 4): the proposal uses sliding mode methods to satisfy mechanical and visual constraints in visual servoing, while a secondary task is considered to properly track the target object. The main advantages of the proposed approach are: low computational cost, robustness and fully utilization of the allowed space for the constraints. - Robust auto tool change for industrial robots using visual servoing (Chapter 4): visual servoing and the proposed method for constraints fulfillment are applied to an automated solution for tool changing in industrial robots. The robustness of the proposed method is due to the control law of the visual servoing, which uses the information acquired by the vision system to close a feedback control loop. Furthermore, sliding mode control is simultaneously used in a prioritized level to satisfy the aforementioned constraints. Thus, the global control accurately places the tool in the warehouse, but satisfying the robot constraints. - Sliding mode controller for reference tracking (Chapter 5): an approach based on sliding mode control is proposed for reference tracking in robot visual servoing using industrial robot manipulators. The novelty of the proposal is the introduction of a sliding mode controller that uses a high-order discontinuous control signal, i.e., joint accelerations or joint jerks, in order to obtain a smoother behavior and ensure the robot system stability, which is demonstrated with a theoretical proof. - PWM and PFM for visual servoing in fully decoupled approaches (Chapter 6): discontinuous control based on pulse width and pulse frequency modulation is proposed for fully decoupled position based visual servoing approaches, in order to get the same convergence time for camera translation and rotation. Moreover, other results obtained in visual servoing applications are also described.Este trabajo presenta diferentes propuestas para tratar problemas habituales en el control de robots por realimentación visual, basadas en la aplicación de métodos de control discontinuos. La viabilidad y eficacia de las propuestas se fundamenta con resultados en simulación y con experimentos reales utilizando un robot manipulador industrial 6R. Las principales contribuciones son: - Invariancia geométrica utilizando control en modo deslizante (Capítulo 3): la invariancia de alto orden definida aquí es utilizada después por los métodos propuestos, para tratar problemas en control por realimentación visual. Se apuertan pruebas teóricas de la condición de invariancia. - Cumplimiento de restricciones en control por realimentación visual (Capítulo 4): esta propuesta utiliza métodos de control en modo deslizante para satisfacer restricciones mecánicas y visuales en control por realimentación visual, mientras una tarea secundaria se encarga del seguimiento del objeto. Las principales ventajas de la propuesta son: bajo coste computacional, robustez y plena utilización del espacio disponible para las restricciones. - Cambio de herramienta robusto para un robot industrial mediante control por realimentación visual (Capítulo 4): el control por realimentación visual y el método propuesto para el cumplimiento de las restricciones se aplican a una solución automatizada para el cambio de herramienta en robots industriales. La robustez de la propuesta radica en el uso del control por realimentación visual, que utiliza información del sistema de visión para cerrar el lazo de control. Además, el control en modo deslizante se utiliza simultáneamente en un nivel de prioridad superior para satisfacer las restricciones. Así pues, el control es capaz de dejar la herramienta en el intercambiador de herramientas de forma precisa, a la par que satisface las restricciones del robot. - Controlador en modo deslizante para seguimiento de referencia (Capítulo 5): se propone un enfoque basado en el control en modo deslizante para seguimiento de referencia en robots manipuladores industriales controlados por realimentación visual. La novedad de la propuesta radica en la introducción de un controlador en modo deslizante que utiliza la señal de control discontinua de alto orden, i.e. aceleraciones o jerks de las articulaciones, para obtener un comportamiento más suave y asegurar la estabilidad del sistema robótico, lo que se demuestra con una prueba teórica. - Control por realimentación visual mediante PWM y PFM en métodos completamente desacoplados (Capítulo 6): se propone un control discontinuo basado en modulación del ancho y frecuencia del pulso para métodos completamente desacoplados de control por realimentación visual basados en posición, con el objetivo de conseguir el mismo tiempo de convergencia para los movimientos de rotación y traslación de la cámara . Además, se presentan también otros resultados obtenidos en aplicaciones de control por realimentación visual.Aquest treball presenta diferents propostes per a tractar problemes habituals en el control de robots per realimentació visual, basades en l'aplicació de mètodes de control discontinus. La viabilitat i eficàcia de les propostes es fonamenta amb resultats en simulació i amb experiments reals utilitzant un robot manipulador industrial 6R. Les principals contribucions són: - Invariància geomètrica utilitzant control en mode lliscant (Capítol 3): la invariància d'alt ordre definida ací és utilitzada després pels mètodes proposats, per a tractar problemes en control per realimentació visual. S'aporten proves teòriques de la condició d'invariància. - Compliment de restriccions en control per realimentació visual (Capítol 4): aquesta proposta utilitza mètodes de control en mode lliscant per a satisfer restriccions mecàniques i visuals en control per realimentació visual, mentre una tasca secundària s'encarrega del seguiment de l'objecte. Els principals avantatges de la proposta són: baix cost computacional, robustesa i plena utilització de l'espai disponible per a les restriccions. - Canvi de ferramenta robust per a un robot industrial mitjançant control per realimentació visual (Capítol 4): el control per realimentació visual i el mètode proposat per al compliment de les restriccions s'apliquen a una solució automatitzada per al canvi de ferramenta en robots industrials. La robustesa de la proposta radica en l'ús del control per realimentació visual, que utilitza informació del sistema de visió per a tancar el llaç de control. A més, el control en mode lliscant s'utilitza simultàniament en un nivell de prioritat superior per a satisfer les restriccions. Així doncs, el control és capaç de deixar la ferramenta en l'intercanviador de ferramentes de forma precisa, a la vegada que satisfà les restriccions del robot. - Controlador en mode lliscant per a seguiment de referència (Capítol 5): es proposa un enfocament basat en el control en mode lliscant per a seguiment de referència en robots manipuladors industrials controlats per realimentació visual. La novetat de la proposta radica en la introducció d'un controlador en mode lliscant que utilitza senyal de control discontínua d'alt ordre, i.e. acceleracions o jerks de les articulacions, per a obtindre un comportament més suau i assegurar l'estabilitat del sistema robòtic, la qual cosa es demostra amb una prova teòrica. - Control per realimentació visual mitjançant PWM i PFM en mètodes completament desacoblats (Capítol 6): es proposa un control discontinu basat en modulació de l'ample i la freqüència del pols per a mètodes completament desacoblats de control per realimentació visual basats en posició, amb l'objectiu d'aconseguir el mateix temps de convergència per als moviments de rotació i translació de la càmera. A més, es presenten també altres resultats obtinguts en aplicacions de control per realimentació visual.Muñoz Benavent, P. (2017). Robot Visual Servoing Using Discontinuous Control [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90430TESI

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints

    Numerical computation and avoidance of manipulator singularities

    Get PDF
    This thesis develops general solutions to two open problems of robot kinematics: the exhaustive computation of the singularity set of a manipulator, and the synthesis of singularity-free paths between given configurations. Obtaining proper solutions to these problems is crucial, because singularities generally pose problems to the normal operation of a robot and, thus, they should be taken into account before the actual construction of a prototype. The ability to compute the whole singularity set also provides rich information on the global motion capabilities of a manipulator. The projections onto the task and joint spaces delimit the working regions in such spaces, may inform on the various assembly modes of the manipulator, and highlight areas where control or dexterity losses can arise, among other anomalous behaviour. These projections also supply a fair view of the feasible movements of the system, but do not reveal all possible singularity-free motions. Automatic motion planners allowing to circumvent problematic singularities should thus be devised to assist the design and programming stages of a manipulator. The key role played by singular configurations has been thoroughly known for several years, but existing methods for singularity computation or avoidance still concentrate on specific classes of manipulators. The absence of methods able to tackle these problems on a sufficiently large class of manipulators is problematic because it hinders the analysis of more complex manipulators or the development of new robot topologies. A main reason for this absence has been the lack of computational tools suitable to the underlying mathematics that such problems conceal. However, recent advances in the field of numerical methods for polynomial system solving now permit to confront these issues with a very general intention in mind. The purpose of this thesis is to take advantage of this progress and to propose general robust methods for the computation and avoidance of singularities on non-redundant manipulators of arbitrary architecture. Overall, the work seeks to contribute to the general understanding on how the motions of complex multibody systems can be predicted, planned, or controlled in an efficient and reliable way.Aquesta tesi desenvolupa solucions generals per dos problemes oberts de la cinemàtica de robots: el càlcul exhaustiu del conjunt singular d'un manipulador, i la síntesi de camins lliures de singularitats entre configuracions donades. Obtenir solucions adequades per aquests problemes és crucial, ja que les singularitats plantegen problemes al funcionament normal del robot i, per tant, haurien de ser completament identificades abans de la construcció d'un prototipus. La habilitat de computar tot el conjunt singular també proporciona informació rica sobre les capacitats globals de moviment d'un manipulador. Les projeccions cap a l'espai de tasques o d'articulacions delimiten les regions de treball en aquests espais, poden informar sobre les diferents maneres de muntar el manipulador, i remarquen les àrees on poden sorgir pèrdues de control o destresa, entre d'altres comportaments anòmals. Aquestes projeccions també proporcionen una imatge fidel dels moviments factibles del sistema, però no revelen tots els possibles moviments lliures de singularitats. Planificadors de moviment automàtics que permetin evitar les singularitats problemàtiques haurien de ser ideats per tal d'assistir les etapes de disseny i programació d'un manipulador. El paper clau que juguen les configuracions singulars ha estat àmpliament conegut durant anys, però els mètodes existents pel càlcul o evitació de singularitats encara es concentren en classes específiques de manipuladors. L'absència de mètodes capaços de tractar aquests problemes en una classe suficientment gran de manipuladors és problemàtica, ja que dificulta l'anàlisi de manipuladors més complexes o el desenvolupament de noves topologies de robots. Una raó principal d'aquesta absència ha estat la manca d'eines computacionals adequades a les matemàtiques subjacents que aquests problemes amaguen. No obstant, avenços recents en el camp de mètodes numèrics per la solució de sistemes polinòmics permeten ara enfrontar-se a aquests temes amb una intenció molt general en ment. El propòsit d'aquesta tesi és aprofitar aquest progrés i proposar mètodes robustos i generals pel càlcul i evitació de singularitats per manipuladors no redundants d'arquitectura arbitrària. En global, el treball busca contribuir a la comprensió general sobre com els moviments de sistemes multicos complexos es poden predir, planificar o controlar d'una manera eficient i segur

    Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance

    Get PDF
    This paper presents a novel analytic method to uniquely solve inverse kinematics of 7 degrees-of-freedom manipulators while avoiding joint limits and singularities. Two auxiliary parameters are introduced to deal with the self-motion manifolds: the global configuration (GC), which specifies the branch of inverse kinematics solutions; and the arm angle (ψ) that parametrizes the elbow redundancy within the specified branch. The relations between the joint angles and the arm angle are derived, in order to map the joint limits and singularities to arm angle values. Then, intervals of feasible arm angles for the specified target pose and global configuration are determined, taking joint limits and singularities into account. A simple metric is proposed to compute the elbow position according to the feasible intervals. When the arm angle is determined, the joint angles can be uniquely calculated from the position-based inverse kinematics algorithm. The presented method does not exhibit the disadvantages inherent to the use of the Jacobian matrix and can be implemented in real-time control systems. This novel algorithm is the first position-based inverse kinematics algorithm to solve both global and local manifolds, using a redundancy resolution strategy to avoid singularities and joint limits.This work was partially supported by the NETT Project [FP7-PEOPLE-2011-ITN-289146]; and Foundation for Science and Technology, Portugal [grant number SFRH/BD/86499/2012].info:eu-repo/semantics/publishedVersio

    Robust Visual Servo Control and Tracking for the Manipulator of a Planetary Exploration Rover

    Get PDF
    To collect samples and handle tools, planetary exploration rovers commonly employ light-weight robotic manipulators. These can suffer from undesirable positioning imprecision due to erroneous end-effector pose estimates obtained by the manipulators kinematics, leading to the failure of the manipulation task. This thesis presents a vision-based end-effector pose correction pipeline to improve the positioning precision of the end-effector during manipulation tasks. Our approach corrects the end-effector pose by fusing the estimates obtained by the manipulators kinematics with information obtained from monocular vision data. We propose a gradient based method to track a set of active markers within the image stream, which provides us with additional information on the covariance of the retrieved image points. In order to recover the 3D pose estimate of the end-effector, we make use of the maximum likelihood perspective-n-point algorithm, allowing us to propagate the image point uncertainties to their 3D pose covariances. Based on evaluations using recorded ground-truth data, we show that our tracking method leads to a reduction of the kinematic position error by up to 77%. To operate outdoors and under changing illumination conditions, the robustness of the tracking approach is paramount. Based on the propagated covariance information, we employ an Error-State Kalman filter for the rejection of pose outliers and the reduction of pose jitter. Its smoothing capabilities are confirmed in simulation. We further show the application of the vision-based correction pipeline as part of a visual servoing scheme designed for the collection of payload boxes by the manipulator of the Lightweight Rover Unit 2, developed at the Institute for Robotics and Mechatronics of the German Aerospace Center. We propose a switching control scheme that applies a position-based visual servo (PBVS) for movements of the end-effector in free space and switches to a PBVS based hybrid impedance visual servoing scheme for movements in close proximity or in direct contact with the coupling partner, to ensure the safe interaction between the manipulator and the payload. The implemented PBVS approach is lastly evaluated in simulation. We show its successful execution and stability in the vicinity of singularities as well as the avoidance of joint position and velocity limits

    Modeling and Control of the Cooperative Automated Fiber Placement System

    Get PDF
    The Automated Fiber Placement (AFP) machines have brought significant improvement on composite manufacturing. However, the current AFP machines are designed for the manufacture of simple structures like shallow shells or tubes, and not capable of handling some applications with more complex shapes. A cooperative AFP system is proposed to manufacture more complex composite components which pose high demand for trajectory planning than those by the current APF system. The system consists of a 6 degree-of-freedom (DOF) serial robot holding the fiber placement head, a 6-DOF revolute-spherical-spherical (RSS) parallel robot on which a 1-DOF mandrel holder is installed and an eye-to-hand photogrammetry sensor, i.e. C-track, to detect the poses of both end-effectors of parallel robot and serial robot. Kinematic models of the parallel robot and the serial robot are built. The analysis of constraints and singularities is conducted for the cooperative AFP system. The definitions of the tool frames for the serial robot and the parallel robot are illustrated. Some kinematic parameters of the parallel robot are calibrated using the photogrammetry sensor. Although, the cooperative AFP system increases the flexibility of composite manufacturing by adding more DOF, there might not be a feasible path for laying up the fiber in some cases due to the requirement of free from collisions and singularities. To meet the challenge, an innovative semi-offline trajectory synchronized algorithm is proposed to incorporate the on-line robot control in following the paths generated off-line especially when the generated paths are infeasible for the current multiple robots to realize. By adding correction to the path of the robots at the points where the collision and singularity occur, the fiber can be laid up continuously without interruption. The correction is calculated based on the pose tracking data of the parallel robot detected by the photogrammetry sensor on-line. Due to the flexibility of the 6-DOF parallel robot, the optimized offsets with varying movements are generated based on the different singularities and constraints. Experimental results demonstrate the successful avoidance of singularities and joint limits, and the designed cooperative AFP system can fulfill the movement needed for manufacturing a composite structure with Y-shape

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Visual guidance of unmanned aerial manipulators

    Get PDF
    The ability to fly has greatly expanded the possibilities for robots to perform surveillance, inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics was mature enough to allow active interactions with the environment. The robots responsible for these interactions are called aerial manipulators and usually combine a multirotor platform and one or more robotic arms. The main objective of this thesis is to formalize the concept of aerial manipulator and present guidance methods, using visual information, to provide them with autonomous functionalities. A key competence to control an aerial manipulator is the ability to localize it in the environment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or IR cameras), restricting the real applications. Furthermore, localization methods with on-board sensors, exported from other robotics fields such as simultaneous localization and mapping (SLAM), require large computational units becoming a handicap in vehicles where size, load, and power consumption are important restrictions. In this regard, this thesis proposes a method to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by means of on-board, low-cost, light-weight and high-rate sensors. With the physical complexity of these robots, it is required to use advanced control techniques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the possibility to accomplish not only with mobility requirements but with other tasks simultaneously and hierarchically, prioritizing them depending on their impact to the overall mission success. In this work we present such control laws and define a number of these tasks to drive the vehicle using visual information, guarantee the robot integrity during flight, and improve the platform stability or increase arm operability. The main contributions of this research work are threefold: (1) Present a localization technique to allow autonomous navigation, this method is specifically designed for aerial platforms with size, load and computational burden restrictions. (2) Obtain control commands to drive the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary tasks during flight. These tasks are specific for aerial manipulators and they are also provided. All the techniques presented in this document have been validated throughout extensive experimentation with real robotic platforms.La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques de vigilància, inspecció o generació de mapes. Tot i això, no és fins fa pocs anys que la recerca en robòtica aèria ha estat prou madura com per començar a permetre interaccions amb l’entorn d’una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment combinen una plataforma multirotor i un braç robòtic. L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar mètodes de guiatge, utilitzant informació visual, per dotar d’autonomia aquest tipus de vehicles. Una competència clau per controlar un manipulador aeri és la capacitat de localitzar-se en l’entorn. Tradicionalment aquesta localització ha requerit d’infraestructura sensorial externa (GPS, càmeres IR, etc.), limitant així les aplicacions reals. Pel contrari, sistemes de localització exportats d’altres camps de la robòtica basats en sensors a bord, com per exemple mètodes de localització i mapejat simultànis (SLAM), requereixen de gran capacitat de còmput, característica que penalitza molt en vehicles on la mida, pes i consum elèctric son grans restriccions. En aquest sentit, aquesta tesi proposa un mètode d’estimació d’estat del robot (posició, velocitat, orientació i acceleració) a partir de sensors instal·lats a bord, de baix cost, baix consum computacional i que proporcionen mesures a alta freqüència. Degut a la complexitat física d’aquests robots, és necessari l’ús de tècniques de control avançades. Gràcies a la seva redundància de graus de llibertat, aquests robots ens ofereixen la possibilitat de complir amb els requeriments de mobilitat i, simultàniament, realitzar tasques de manera jeràrquica, ordenant-les segons l’impacte en l’acompliment de la missió. En aquest treball es presenten aquestes lleis de control, juntament amb la descripció de tasques per tal de guiar visualment el vehicle, garantir la integritat del robot durant el vol, millorar de l’estabilitat del vehicle o augmentar la manipulabilitat del braç. Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una tècnica de localització per dotar d’autonomia el robot. Aquest mètode està especialment dissenyat per a plataformes amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control necessàries per guiar el vehicle a partir d’informació visual. (3) Integrar aquestes accions dins una estructura de control jeràrquica utilitzant la redundància del robot per complir altres tasques durant el vol. Aquestes tasques son específiques per a manipuladors aeris i també es defineixen en aquest document. Totes les tècniques presentades en aquesta tesi han estat avaluades de manera experimental amb plataformes robòtiques real
    • …
    corecore