60 research outputs found

    Improving the management efficiency of GPU workloads in data centers through GPU virtualization

    Full text link
    [EN] Graphics processing units (GPUs) are currently used in data centers to reduce the execution time of compute-intensive applications. However, the use of GPUs presents several side effects, such as increased acquisition costs and larger space requirements. Furthermore, GPUs require a nonnegligible amount of energy even while idle. Additionally, GPU utilization is usually low for most applications. In a similar way to the use of virtual machines, using virtual GPUs may address the concerns associated with the use of these devices. In this regard, the remote GPU virtualization mechanism could be leveraged to share the GPUs present in the computing facility among the nodes of the cluster. This would increase overall GPU utilization, thus reducing the negative impact of the increased costs mentioned before. Reducing the amount of GPUs installed in the cluster could also be possible. However, in the same way as job schedulers map GPU resources to applications, virtual GPUs should also be scheduled before job execution. Nevertheless, current job schedulers are not able to deal with virtual GPUs. In this paper, we analyze the performance attained by a cluster using the remote Compute Unified Device Architecture middleware and a modified version of the Slurm scheduler, which is now able to assign remote GPUs to jobs. Results show that cluster throughput, measured as jobs completed per time unit, is doubled at the same time that the total energy consumption is reduced up to 40%. GPU utilization is also increased.Generalitat Valenciana, Grant/Award Number: PROMETEO/2017/077; MINECO and FEDER, Grant/Award Number: TIN2014-53495-R, TIN2015-65316-P and TIN2017-82972-RIserte, S.; Prades, J.; Reaño González, C.; Silla, F. (2021). Improving the management efficiency of GPU workloads in data centers through GPU virtualization. Concurrency and Computation: Practice and Experience. 33(2):1-16. https://doi.org/10.1002/cpe.5275S11633

    On the Benefits of the Remote GPU Virtualization Mechanism: the rCUDA Case

    Get PDF
    [EN] Graphics processing units (GPUs) are being adopted in many computing facilities given their extraordinary computing power, which makes it possible to accelerate many general purpose applications from different domains. However, GPUs also present several side effects, such as increased acquisition costs as well as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still consume some amount of energy while idle, and their utilization is usually low for most workloads. In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in the computing facility among the applications being executed in the cluster. In this way, several applications being executed in different (or the same) cluster nodes can share 1 or more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the cluster may also be possible. In this paper, we explore some of the benefits that remote GPU virtualization brings to clusters. For instance, this mechanism allows an application to use all the GPUs present in the computing facility. Another benefit of this technique is that cluster throughput, measured as jobs completed per time unit, is noticeably increased when this technique is used. In this regard, cluster throughput can be doubled for some workloads. Furthermore, in addition to increase overall GPU utilization, total energy consumption can be reduced up to 40%. This may be key in the context of exascale computing facilities, which present an important energy constraint. Other benefits are related to the cloud computing domain, where a GPU can be easily shared among several virtual machines. Finally, GPU migration (and therefore server consolidation) is one more benefit of this novel technique.Generalitat Valenciana, Grant/Award Number: PROMETEOII/2013/009; MINECO and FEDER, Grant/Award Number: TIN2014-53495-RSilla Jiménez, F.; Iserte Agut, S.; Reaño González, C.; Prades, J. (2017). On the Benefits of the Remote GPU Virtualization Mechanism: the rCUDA Case. Concurrency and Computation Practice and Experience. 29(13):1-17. https://doi.org/10.1002/cpe.4072S1172913Wu H Diamos G Sheard T Red Fox: An execution environment for relational query processing on GPUs Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization CGO '14 Orlando, FL, USA ACM 2014 44:44 44:54Playne DP Hawick KA Data parallel three-dimensional cahn-hilliard field equation simulation on GPUs with CUDA Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA Las Vegas, Nevada, USA 2009Yamazaki, I., Dong, T., Solcà, R., Tomov, S., Dongarra, J., & Schulthess, T. (2013). Tridiagonalization of a dense symmetric matrix on multiple GPUs and its application to symmetric eigenvalue problems. Concurrency and Computation: Practice and Experience, 26(16), 2652-2666. doi:10.1002/cpe.3152Yuancheng Luo D Canny edge detection on NVIDIA CUDA IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08 Anchorage, AK, USA IEEE 2008 1 8Surkov, V. (2010). Parallel option pricing with Fourier space time-stepping method on graphics processing units. Parallel Computing, 36(7), 372-380. doi:10.1016/j.parco.2010.02.006Agarwal, P. K., Hampton, S., Poznanovic, J., Ramanthan, A., Alam, S. R., & Crozier, P. S. (2012). Performance modeling of microsecond scale biological molecular dynamics simulations on heterogeneous architectures. Concurrency and Computation: Practice and Experience, 25(10), 1356-1375. doi:10.1002/cpe.2943Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. Lecture Notes in Computer Science, 44-60. doi:10.1007/10968987_3Silla F Prades J Iserte S Reaño C Remote GPU virtualization: Is it useful The 2nd IEEE International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era Barcelona, Spain IEEE Computer Society 2016 41 48Liang TY Chang YW GridCuda: A grid-enabled CUDA programming toolkit 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA) Biopolis, Singapore IEEE 2011 141 146Oikawa M Kawai A Nomura K Yasuoka K Yoshikawa K Narumi T DS-CUDA: A middleware to use many GPUs in the cloud environment Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis SCC '12 IEEE Computer Society Washington, DC, USA 2012 1207 1214Giunta G Montella R Agrillo G Coviello G A GPGPU transparent virtualization component for high performance computing clouds Euro-Par 2010 - Parallel Processing Ischia, Italy Springer 2010Shi L Chen H Sun J vCUDA: GPU accelerated high performance computing in virtual machines IEEE International Symposium on Parallel & Distributed Processing, 2009. IPDPS 2009 Rome, Italy IEEE 2009 1 11Gupta V Gavrilovska A Schwan K GViM: GPU-accelerated virtual machines Proceedings of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing Nuremberg, Germany 2009 17 24Peña, A. J., Reaño, C., Silla, F., Mayo, R., Quintana-Ortí, E. S., & Duato, J. (2014). A complete and efficient CUDA-sharing solution for HPC clusters. Parallel Computing, 40(10), 574-588. doi:10.1016/j.parco.2014.09.011CUDA API Reference Manual 7.5 https://developer.nvidia.com/cuda-toolkit 2016Merritt AM Gupta V Verma A Gavrilovska A Schwan K Shadowfax: Scaling in heterogeneous cluster systems via GPGPU assemblies Proceedings of the 5th International Workshop on Virtualization Technologies in Distributed Computing VTDC '11 ACM New York, NY, USA 2011 3 10Shadowfax II - scalable implementation of GPGPU assemblies http://keeneland.gatech.edu/software/keeneland/kidronNVIDIA The NVIDIA GPU Computing SDK Version 5.5 2013iperf3: A TCP, UDP, and SCTP network bandwidth measurement tool https://github.com/esnet/iperf 2016Reaño C Silla F Shainer G Schultz S Local and remote GPUs perform similar with EDR 100G InfiniBand Proceedings of the Industrial Track of the 16th International Middleware Conference Middleware Industry '15 Vancouver, Canada 2015Reaño, C., Silla, F., Castelló, A., Peña, A. J., Mayo, R., Quintana-Ortí, E. S., & Duato, J. (2014). Improving the user experience of the rCUDA remote GPU virtualization framework. Concurrency and Computation: Practice and Experience, 27(14), 3746-3770. doi:10.1002/cpe.3409Iserte S Castelló A Mayo R Slurm support for remote GPU virtualization: Implementation and performance study 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD) 2014 318 325Vouzis, P. D., & Sahinidis, N. V. (2010). GPU-BLAST: using graphics processors to accelerate protein sequence alignment. Bioinformatics, 27(2), 182-188. doi:10.1093/bioinformatics/btq644Brown, W. M., Kohlmeyer, A., Plimpton, S. J., & Tharrington, A. N. (2012). Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh. Computer Physics Communications, 183(3), 449-459. doi:10.1016/j.cpc.2011.10.012Liu, Y., Schmidt, B., Liu, W., & Maskell, D. L. (2010). CUDA–MEME: Accelerating motif discovery in biological sequences using CUDA-enabled graphics processing units. Pattern Recognition Letters, 31(14), 2170-2177. doi:10.1016/j.patrec.2009.10.009Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. doi:10.1093/bioinformatics/btt055Klus, P., Lam, S., Lyberg, D., Cheung, M., Pullan, G., McFarlane, I., … Lam, B. Y. (2012). BarraCUDA - a fast short read sequence aligner using graphics processing units. BMC Research Notes, 5(1), 27. doi:10.1186/1756-0500-5-27Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. (2004). Genome Biology, 5(2), R12. doi:10.1186/gb-2004-5-2-r12Chang, C.-C., & Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2(3), 1-27. doi:10.1145/1961189.1961199Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289NVIDIA Popular GPU-Accelerated Applications Catalog http://www.nvidia.es/content/tesla/pdf/gpu-accelerated-applications-for-hpc.pdf 2016Walters JP Younge AJ Kang D-I GPU-passthrough performance: A comparison of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL applications 7th IEEE International Conference on Cloud Computing (CLOUD 2014) Anchorage, AK, USA 2014Yang C-T Wang H-Y Ou W-S Liu Y-T Hsu C-H On implementation of GPU virtualization using PCI pass-through 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CLOUDCOM) Taipei, Taiwan 2012 711 716Pérez F Reaño C Silla F Providing CUDA acceleration to KVM virtual machines in InfiniBand clusters with rCUDA Proceedings of the International Conference on Distributed Applications and Interoperable Systems Crete, Greece 2016Jo, H., Jeong, J., Lee, M., & Choi, D. H. (2013). Exploiting GPUs in Virtual Machine for BioCloud. BioMed Research International, 2013, 1-11. doi:10.1155/2013/939460Prades J Reaño C Silla F CUDA acceleration for Xen virtual machines in Infiniband clusters with rCUDA Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPoPP '16 Barcelona, Spain 2016Mellanox Mellanox OFED for Linux User Manual 2015Liu, Y., Wirawan, A., & Schmidt, B. (2013). CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics, 14(1). doi:10.1186/1471-2105-14-117Takizawa H Sato K Komatsu K Kobayashi H CheCUDA: A checkpoint/restart tool for CUDA applications Proceedings of the 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies Hiroshima, Japan 200

    GSaaS: A service to cloudify and schedule GPUs

    Get PDF
    Cloud technology is an attractive infrastructure solution that provides customers with an almost unlimited on-demand computational capacity using a pay-per-use approach, and allows data centers to increase their energy and economic savings by adopting a virtualized resource sharing model. However, resources such as graphics processing units (GPUs), have not been fully adapted to this model. Although, general-purpose computing on graphics processing units (GPGPU) is becoming more and more popular, cloud providers lack of flexibility to manage accelerators, because of the extended use of peripheral component interconnect (PCI) passthrough techniques to attach GPUs to virtual machines (VMs). For this reason, we design, develop, and evaluate a service that provides a complete management of cloudified GPUs (cGPUs) in public cloud platforms. Our solution enables an effective, anonymous, and transparent access from VMs to cGPUs that are previously scheduled and assigned by a full resource manager, taking into account new GPU selection policies and new working modes based on the locality of the physical accelerators and the exclusivity when accessing them. This easy-to-adopt tool improves the resource availability through different cGPUs configurations for end-users, whilst cloud providers are able to achieve a better utilization of their infrastructures and offer more competitive services. Scalability results in a real cloud environment demonstrate that our solution introduces a virtually null overhead in the deployment of VMs. Besides, performance experiments reveal that GPU-enabled clusters based on cloud infrastructures can benefit from our proposal not only exploiting better the accelerators, but also serving more jobs requests per unit of time

    Improving Performance and Energy Efficiency of Heterogeneous Systems with rCUDA

    Full text link
    Tesis por compendio[ES] En la última década la utilización de la GPGPU (General Purpose computing in Graphics Processing Units; Computación de Propósito General en Unidades de Procesamiento Gráfico) se ha vuelto tremendamente popular en los centros de datos de todo el mundo. Las GPUs (Graphics Processing Units; Unidades de Procesamiento Gráfico) se han establecido como elementos aceleradores de cómputo que son usados junto a las CPUs formando sistemas heterogéneos. La naturaleza masivamente paralela de las GPUs, destinadas tradicionalmente al cómputo de gráficos, permite realizar operaciones numéricas con matrices de datos a gran velocidad debido al gran número de núcleos que integran y al gran ancho de banda de acceso a memoria que poseen. En consecuencia, aplicaciones de todo tipo de campos, tales como química, física, ingeniería, inteligencia artificial, ciencia de materiales, etc. que presentan este tipo de patrones de cómputo se ven beneficiadas, reduciendo drásticamente su tiempo de ejecución. En general, el uso de la aceleración del cómputo en GPUs ha significado un paso adelante y una revolución. Sin embargo, no está exento de problemas, tales como problemas de eficiencia energética, baja utilización de las GPUs, altos costes de adquisición y mantenimiento, etc. En esta tesis pretendemos analizar las principales carencias que presentan estos sistemas heterogéneos y proponer soluciones basadas en el uso de la virtualización remota de GPUs. Para ello hemos utilizado la herramienta rCUDA, desarrollada en la Universitat Politècnica de València, ya que multitud de publicaciones la avalan como el framework de virtualización remota de GPUs más avanzado de la actualidad. Los resutados obtenidos en esta tesis muestran que el uso de rCUDA en entornos de Cloud Computing incrementa el grado de libertad del sistema, ya que permite crear instancias virtuales de las GPUs físicas totalmente a medida de las necesidades de cada una de las máquinas virtuales. En entornos HPC (High Performance Computing; Computación de Altas Prestaciones), rCUDA también proporciona un mayor grado de flexibilidad de uso de las GPUs de todo el clúster de cómputo, ya que permite desacoplar totalmente la parte CPU de la parte GPU de las aplicaciones. Además, las GPUs pueden estar en cualquier nodo del clúster, independientemente del nodo en el que se está ejecutando la parte CPU de la aplicación. En general, tanto para Cloud Computing como en el caso de HPC, este mayor grado de flexibilidad se traduce en un aumento hasta 2x de la productividad de todo el sistema al mismo tiempo que se reduce el consumo energético en un 15%. Finalmente, también hemos desarrollado un mecanismo de migración de trabajos de la parte GPU de las aplicaciones que ha sido integrado dentro del framework rCUDA. Este mecanismo de migración ha sido evaluado y los resultados muestran claramente que, a cambio de una pequeña sobrecarga, alrededor de 400 milisegundos, en el tiempo de ejecución de las aplicaciones, es una potente herramienta con la que, de nuevo, aumentar la productividad y reducir el gasto energético del sistema. En resumen, en esta tesis se analizan los principales problemas derivados del uso de las GPUs como aceleradores de cómputo, tanto en entornos HPC como de Cloud Computing, y se demuestra cómo a través del uso del framework rCUDA, estos problemas pueden solucionarse. Además se desarrolla un potente mecanismo de migración de trabajos GPU, que integrado dentro del framework rCUDA, se convierte en una herramienta clave para los futuros planificadores de trabajos en clusters heterogéneos.[CA] En l'última dècada la utilització de la GPGPU(General Purpose computing in Graphics Processing Units; Computació de Propòsit General en Unitats de Processament Gràfic) s'ha tornat extremadament popular en els centres de dades de tot el món. Les GPUs (Graphics Processing Units; Unitats de Processament Gràfic) s'han establert com a elements acceleradors de còmput que s'utilitzen al costat de les CPUs formant sistemes heterogenis. La naturalesa massivament paral·lela de les GPUs, destinades tradicionalment al còmput de gràfics, permet realitzar operacions numèriques amb matrius de dades a gran velocitat degut al gran nombre de nuclis que integren i al gran ample de banda d'accés a memòria que posseeixen. En conseqüència, les aplicacions de tot tipus de camps, com ara química, física, enginyeria, intel·ligència artificial, ciència de materials, etc. que presenten aquest tipus de patrons de còmput es veuen beneficiades reduint dràsticament el seu temps d'execució. En general, l'ús de l'acceleració del còmput en GPUs ha significat un pas endavant i una revolució, però no està exempt de problemes, com ara poden ser problemes d'eficiència energètica, baixa utilització de les GPUs, alts costos d'adquisició i manteniment, etc. En aquesta tesi pretenem analitzar les principals mancances que presenten aquests sistemes heterogenis i proposar solucions basades en l'ús de la virtualització remota de GPUs. Per a això hem utilitzat l'eina rCUDA, desenvolupada a la Universitat Politècnica de València, ja que multitud de publicacions l'avalen com el framework de virtualització remota de GPUs més avançat de l'actualitat. Els resultats obtinguts en aquesta tesi mostren que l'ús de rCUDA en entorns de Cloud Computing incrementa el grau de llibertat del sistema, ja que permet crear instàncies virtuals de les GPUs físiques totalment a mida de les necessitats de cadascuna de les màquines virtuals. En entorns HPC (High Performance Computing; Computació d'Altes Prestacions), rCUDA també proporciona un major grau de flexibilitat en l'ús de les GPUs de tot el clúster de còmput, ja que permet desacoblar totalment la part CPU de la part GPU de les aplicacions. A més, les GPUs poden estar en qualsevol node del clúster, sense importar el node en el qual s'està executant la part CPU de l'aplicació. En general, tant per a Cloud Computing com en el cas del HPC, aquest major grau de flexibilitat es tradueix en un augment fins 2x de la productivitat de tot el sistema al mateix temps que es redueix el consum energètic en aproximadament un 15%. Finalment, també hem desenvolupat un mecanisme de migració de treballs de la part GPU de les aplicacions que ha estat integrat dins del framework rCUDA. Aquest mecanisme de migració ha estat avaluat i els resultats mostren clarament que, a canvi d'una petita sobrecàrrega, al voltant de 400 mil·lisegons, en el temps d'execució de les aplicacions, és una potent eina amb la qual, de nou, augmentar la productivitat i reduir la despesa energètica de sistema. En resum, en aquesta tesi s'analitzen els principals problemes derivats de l'ús de les GPUs com acceleradors de còmput, tant en entorns HPC com de Cloud Computing, i es demostra com a través de l'ús del framework rCUDA, aquests problemes poden solucionar-se. A més es desenvolupa un potent mecanisme de migració de treballs GPU, que integrat dins del framework rCUDA, esdevé una eina clau per als futurs planificadors de treballs en clústers heterogenis.[EN] In the last decade the use of GPGPU (General Purpose computing in Graphics Processing Units) has become extremely popular in data centers around the world. GPUs (Graphics Processing Units) have been established as computational accelerators that are used alongside CPUs to form heterogeneous systems. The massively parallel nature of GPUs, traditionally intended for graphics computing, allows to perform numerical operations with data arrays at high speed. This is achieved thanks to the large number of cores GPUs integrate and the large bandwidth of memory access. Consequently, applications of all kinds of fields, such as chemistry, physics, engineering, artificial intelligence, materials science, and so on, presenting this type of computational patterns are benefited by drastically reducing their execution time. In general, the use of computing acceleration provided by GPUs has meant a step forward and a revolution, but it is not without problems, such as energy efficiency problems, low utilization of GPUs, high acquisition and maintenance costs, etc. In this PhD thesis we aim to analyze the main shortcomings of these heterogeneous systems and propose solutions based on the use of remote GPU virtualization. To that end, we have used the rCUDA middleware, developed at Universitat Politècnica de València. Many publications support rCUDA as the most advanced remote GPU virtualization framework nowadays. The results obtained in this PhD thesis show that the use of rCUDA in Cloud Computing environments increases the degree of freedom of the system, as it allows to create virtual instances of the physical GPUs fully tailored to the needs of each of the virtual machines. In HPC (High Performance Computing) environments, rCUDA also provides a greater degree of flexibility in the use of GPUs throughout the computing cluster, as it allows the CPU part to be completely decoupled from the GPU part of the applications. In addition, GPUs can be on any node in the cluster, regardless of the node on which the CPU part of the application is running. In general, both for Cloud Computing and in the case of HPC, this greater degree of flexibility translates into an up to 2x increase in system-wide throughput while reducing energy consumption by approximately 15%. Finally, we have also developed a job migration mechanism for the GPU part of applications that has been integrated within the rCUDA middleware. This migration mechanism has been evaluated and the results clearly show that, in exchange for a small overhead of about 400 milliseconds in the execution time of the applications, it is a powerful tool with which, again, we can increase productivity and reduce energy foot print of the computing system. In summary, this PhD thesis analyzes the main problems arising from the use of GPUs as computing accelerators, both in HPC and Cloud Computing environments, and demonstrates how thanks to the use of the rCUDA middleware these problems can be addressed. In addition, a powerful GPU job migration mechanism is being developed, which, integrated within the rCUDA framework, becomes a key tool for future job schedulers in heterogeneous clusters.This work jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants (20524/PDC/18, 20813/PI/18 and 20988/PI/18) and by the Spanish MEC and European Commission FEDER under grants TIN2015-66972-C5-3-R, TIN2016-78799-P and CTQ2017-87974-R (AEI/FEDER, UE). We also thank NVIDIA for hardware donation under GPU Educational Center 2014-2016 and Research Center 2015-2016. The authors thankfully acknowledge the computer resources at CTE-POWER and the technical support provided by Barcelona Supercomputing Center - Centro Nacional de Supercomputación (RES-BCV-2018-3-0008). Furthermore, researchers from Universitat Politècnica de València are supported by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support provided by Mellanox Technologies Inc. Prof. Pradipta Purkayastha, from Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, is acknowledged for kindly providing the initial ligand and DNA structures.Prades Gasulla, J. (2021). Improving Performance and Energy Efficiency of Heterogeneous Systems with rCUDA [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168081TESISCompendi

    On the Enhancement of Remote GPU Virtualization in High Performance Clusters

    Full text link
    Graphics Processing Units (GPUs) are being adopted in many computing facilities given their extraordinary computing power, which makes it possible to accelerate many general purpose applications from different domains. However, GPUs also present several side effects, such as increased acquisition costs as well as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still consume some amount of energy while idle and their utilization is usually low for most workloads. In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in the computing facility among the applications being executed in the cluster. In this way, several applications being executed in different (or the same) cluster nodes can share one or more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the cluster may also be possible. In this dissertation we enhance one framework offering remote GPU virtualization capabilities, referred to as rCUDA, for its use in high-performance clusters. While the initial prototype version of rCUDA demonstrated its functionality, it also revealed concerns with respect to usability, performance, and support for new GPU features, which prevented its used in production environments. These issues motivated this thesis, in which all the research is primarily conducted with the aim of turning rCUDA into a production-ready solution for eventually transferring it to industry. The new version of rCUDA resulting from this work presents a reduction of up to 35% in execution time of the applications analyzed with respect to the initial version. Compared to the use of local GPUs, the overhead of this new version of rCUDA is below 5% for the applications studied when using the latest high-performance computing networks available.Las unidades de procesamiento gráfico (Graphics Processing Units, GPUs) están siendo utilizadas en muchas instalaciones de computación dada su extraordinaria capacidad de cálculo, la cual hace posible acelerar muchas aplicaciones de propósito general de diferentes dominios. Sin embargo, las GPUs también presentan algunas desventajas, como el aumento de los costos de adquisición, así como mayores requerimientos de espacio. Asimismo, también requieren un suministro de energía más potente. Además, las GPUs consumen una cierta cantidad de energía aún estando inactivas, y su utilización suele ser baja para la mayoría de las cargas de trabajo. De manera similar a las máquinas virtuales, el uso de GPUs virtuales podría hacer frente a los inconvenientes mencionados. En este sentido, el mecanismo de virtualización remota de GPUs permite que una aplicación que se ejecuta en un nodo de un clúster utilice de forma transparente las GPUs instaladas en otros nodos de dicho clúster. Además, esta técnica permite compartir las GPUs presentes en el clúster entre las aplicaciones que se ejecutan en el mismo. De esta manera, varias aplicaciones que se ejecutan en diferentes nodos de clúster (o los mismos) pueden compartir una o más GPUs ubicadas en otros nodos del clúster. Compartir GPUs aumenta la utilización general de la GPU, reduciendo así el impacto negativo de las desventajas anteriormente mencionadas. De igual forma, este mecanismo también permite reducir la cantidad total de GPUs instaladas en el clúster. En esta tesis mejoramos un entorno de trabajo llamado rCUDA, el cual ofrece funcionalidades de virtualización remota de GPUs para su uso en clusters de altas prestaciones. Si bien la versión inicial del prototipo de rCUDA demostró su funcionalidad, también reveló dificultades con respecto a la usabilidad, el rendimiento y el soporte para nuevas características de las GPUs, lo cual impedía su uso en entornos de producción. Estas consideraciones motivaron la presente tesis, en la que toda la investigación llevada a cabo tiene como objetivo principal convertir rCUDA en una solución lista para su uso entornos de producción, con la finalidad de transferirla eventualmente a la industria. La nueva versión de rCUDA resultante de este trabajo presenta una reducción de hasta el 35% en el tiempo de ejecución de las aplicaciones analizadas con respecto a la versión inicial. En comparación con el uso de GPUs locales, la sobrecarga de esta nueva versión de rCUDA es inferior al 5% para las aplicaciones estudiadas cuando se utilizan las últimas redes de computación de altas prestaciones disponibles.Les unitats de processament gràfic (Graphics Processing Units, GPUs) estan sent utilitzades en moltes instal·lacions de computació donada la seva extraordinària capacitat de càlcul, la qual fa possible accelerar moltes aplicacions de propòsit general de diferents dominis. No obstant això, les GPUs també presenten alguns desavantatges, com l'augment dels costos d'adquisició, així com major requeriment d'espai. Així mateix, també requereixen un subministrament d'energia més potent. A més, les GPUs consumeixen una certa quantitat d'energia encara estant inactives, i la seua utilització sol ser baixa per a la majoria de les càrregues de treball. D'una manera semblant a les màquines virtuals, l'ús de GPUs virtuals podria fer front als inconvenients esmentats. En aquest sentit, el mecanisme de virtualització remota de GPUs permet que una aplicació que s'executa en un node d'un clúster utilitze de forma transparent les GPUs instal·lades en altres nodes d'aquest clúster. A més, aquesta tècnica permet compartir les GPUs presents al clúster entre les aplicacions que s'executen en el mateix. D'aquesta manera, diverses aplicacions que s'executen en diferents nodes de clúster (o els mateixos) poden compartir una o més GPUs ubicades en altres nodes del clúster. Compartir GPUs augmenta la utilització general de la GPU, reduint així l'impacte negatiu dels desavantatges anteriorment esmentades. A més a més, aquest mecanisme també permet reduir la quantitat total de GPUs instal·lades al clúster. En aquesta tesi millorem un entorn de treball anomenat rCUDA, el qual ofereix funcionalitats de virtualització remota de GPUs per al seu ús en clústers d'altes prestacions. Si bé la versió inicial del prototip de rCUDA va demostrar la seua funcionalitat, també va revelar dificultats pel que fa a la usabilitat, el rendiment i el suport per a noves característiques de les GPUs, la qual cosa impedia el seu ús en entorns de producció. Aquestes consideracions van motivar la present tesi, en què tota la investigació duta a terme té com a objectiu principal convertir rCUDA en una solució preparada per al seu ús entorns de producció, amb la finalitat de transferir-la eventualment a la indústria. La nova versió de rCUDA resultant d'aquest treball presenta una reducció de fins al 35% en el temps d'execució de les aplicacions analitzades respecte a la versió inicial. En comparació amb l'ús de GPUs locals, la sobrecàrrega d'aquesta nova versió de rCUDA és inferior al 5% per a les aplicacions estudiades quan s'utilitzen les últimes xarxes de computació d'altes prestacions disponibles.Reaño González, C. (2017). On the Enhancement of Remote GPU Virtualization in High Performance Clusters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86219TESISPremios Extraordinarios de tesis doctorale

    Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study

    Full text link
    [EN] Virtual Screening (VS) methods can considerably aid clinical research by predicting how ligands interact with pharmacological targets, thus accelerating the slow and critical process of finding new drugs. VS methods screen large databases of chemical compounds to find a candidate that interacts with a given target. The computational requirements of VS models, along with the size of the databases, containing up to millions of biological macromolecular structures, means computer clusters are a must. However, programming current clusters of computers is no easy task, as they have become heterogeneous and distributed systems where various programming models need to be used together to fully leverage their resources. This paper evaluates several strategies to provide peak performance to a GPU-based molecular docking application called METADOCK in heterogeneous clusters of computers based on CPU and NVIDIA Graphics Processing Units (GPUs). Our developments start with an OpenMP, MPI and CUDA METADOCK version as a baseline case of cluster utilization. Next, we explore the virtualized GPUs provided by the rCUDA framework in order to facilitate the programming process. rCUDA allows us to use remote GPUs, i.e. installed in other nodes of the cluster, as if they were installed in the local node, so enabling access to them using only OpenMP and CUDA. Finally, several load balancing strategies are analyzed in a search to enhance performance. Our results reveal that the use of middleware like rCUDA is a convincing alternative to leveraging heterogeneous clusters, as it offers even better performance than traditional approaches and also makes it easier to program these emerging clusters.This work is jointly supported by the Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) under grant 18946/JLI/13, and by the Spanish MEC and European Commission FEDER under grants TIN2015-66972-C5-3-R and TIN2016-78799-P (AEI/FEDER, UE). We also thank NVIDIA for hardware donation under GPU Educational Center 2014-2016 and Research Center 2015-2016. Furthermore, researchers from Universitat Politecnica de Valencia are supported by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support provided by Mellanox Technologies Inc.Imbernón, B.; Prades Gasulla, J.; Gimenez Canovas, D.; Cecilia, JM.; Silla Jiménez, F. (2018). Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study. Future Generation Computer Systems. 79:26-37. https://doi.org/10.1016/j.future.2017.08.050S26377

    Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units

    Full text link
    [EN] Internet of Things (IoT) devices are usually low performance nodes connected by low bandwidth networks. To improve performance in such scenarios, some computations could be done at the edge of the network. However, edge devices may not have enough computing power to accelerate applications such as the popular machine learning ones. Using remote virtual graphics processing units (GPUs) can address this concern by accelerating applications leveraging a GPU installed in a remote device. However, this requires exchanging data with the remote GPU across the slow network. To address the problem with the slow network, the data to be exchanged with the remote GPU could be compressed. In this article, we explore the suitability of using data compression in the context of remote GPU virtualization frameworks in edge scenarios executing machine learning applications. We use popular machine learning applications to carry out such exploration. After characterizing the GPU data transfers of these applications, we analyze the usage of existing compression libraries for compressing those data transfers to/from the remote GPU. Our exploration shows that transferring compressed data becomes more beneficial as networks get slower, reducing transfer time by up to 10 times. Our analysis also reveals that efficient integration of compression into remote GPU virtualization frameworks is strongly required.European Union's Horizon 2020 Research and Innovation Programme, Grant/Award Numbers: 101016577, 101017861.Peñaranda-Cebrián, C.; Reaño, C.; Silla, F. (2022). Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units. Concurrency and Computation: Practice and Experience. 35(20):1-19. https://doi.org/10.1002/cpe.7328119352

    Using remote accelerators to improve the performance of mathematical libraries

    Full text link
    [EN] Virtualization technologies, such as virtual machines, have demonstrated to provide economic savings to data centers because they increase overall resource utilization. However, in addition to virtualize entire computers, the virtualization of individual devices also provides significant benefits. As an example, the remote GPU virtualization technique moves local GPU computations to remote GPU devices. Nevertheless, it is also possible to offload the computationally intensive CPU parts of an application to remote accelerators. In this work we present a first implementation of a new middleware that uses remote accelerators to perform the computations of scientific libraries, which were initially intended to be executed in the local CPU. Moreover, forwarding the computationally intensive parts of these libraries to remote accelerators is done in a transparent way to applications, not having to modify their source code. The first implementation of the new middleware is based on offloading the FFT and BLAS libraries, which are used to present the benefits of the new proposal by carrying out an in-depth performance evaluation. Results demonstrate that the new middleware is feasible. Moreover, scientific libraries such as FFTW may experience a speed-up larger than 25x, despite of having to transfer data back and forth to the remote server owning the accelerator.Mislata Valero, S. (2016). Using remote accelerators to improve the performance of mathematical libraries. http://hdl.handle.net/10251/76426Archivo delegad

    All the Shades of the Cloud

    Get PDF
    Cloud computing is a powerful technology that in the last decade revolutionised computing and storage in particular for Industry and Private Sectors. Today, large investments are ongoing to build Cloud Infrastructures at National or International level (e.g. the European Open Science Cloud initiative). Also, scientists are approaching commercial and private Clouds at different scales: single researchers test the Clouds for small research projects, at the same time large international collaborations are evaluating Cloud technology to collect, process, analyse, archive and curate their data. In this paper, we discuss the use of Cloud in Astrophysics at different scales using some examples and we present future trends and possibilities that the use of Cloud computing and its convergence with high performance computing will open: from high-end data analysis to high performance data analytics, from scientific computing to data analytics
    corecore