5,490 research outputs found

    Identifying opportunities for developing CSP and PV-CSP hybrid projects under current tender conditions and market perspectives in MENA – benchmarking with PV-CCGT

    Get PDF
    Concentrating solar power (CSP) is one of the promising renewable energy technologies provided the fact that it is equipped with a cost-efficient storage system, thermal energy storage (TES). This solves the issue of intermittency of other renewable energy technologies and gives the advantage of achieving higher capacity factors and lower levelized costs of electricity (LCOE). This is the main reason why solar tower power plants (STPP) with molten salts and integrated TES are considered one of the most promising CSP technologies in the short term [1]. On the other hand, solar photovoltaic (PV) is a technology whose costs have been decreasing and are expected to continue doing so thus providing competitive LCOE values, but with relatively low capacity factors as electrical storage systems remain not cost-effective. Combining advantages and eliminating drawbacks of both technologies (CSP and PV), Hybridized PV-CSP power plants can be deemed as a competitive economic solution to offer firm output power when CSP is operated smartly so that its load is regulated in response to the PV output. Indeed previous works, have identified that it would allow achieving lower LCOEs than stand-alone CSP plants by means of allowing it to better utilize the solar field for storing energy during the daytime while PV is used [1]. On the fossil-based generation side, the gas turbine combined cycle (CCGT) occupies an outstanding position among power generation technologies. This is due to the fact that it is considered the most efficient fossil fuel-to-electricity converter, in addition to the maturity of such technology, high flexibility, and the generally low LCOE, which is largely dominated by fuel cost and varies depending on the natural gas price at a specific location. Obviously, the main drawback is the generated carbon emissions. In countries rich in natural gas resources and with vast potential for renewable energies implementation, such as the United Arab Emirates (UAE), abandoning a low LCOE technology with competitively low emissions – compared to coal or oil - and heading to costly pure renewable generation, seems like an aggressive plan. Therefore, hybridizing CCGT with renewable generation can be considered an attractive option for reducing emissions at reasonable costs. This is the case of the UAE with vast resources of both natural gas and solar energy. Previous work have shown the advantages of hybrid PV-CCGT and hybrid PV-CSP plants separately [1][2]. In this thesis, CSP and the two hybrid systems are compared on the basis of LCOE and CO2 emissions for a same firm-power capacity factor when considering a location in the UAE. The results are compared against each other to highlight the benefits of each technology from both environmental and economic standpoints and provide recommendations for future work in the field. The techno-economic analysis of CSP (STPP with TES), PV-CSP(STPP with TES) and PV-CCGT power plants have been performed by DYESOPT, an in-house tool developed in KTH, which runs techno-economic performance evaluation of power plants through multi-objective optimization for specific locations[1]. For this thesis, a convenient location in the UAE was chosen for simulating the performance of the plants. The UAE is endowed by the seventh-largest proven natural gas reserves and average to high global horizontal irradiation (GHI) and direct normal irradiation (DNI) values all year round, values considered to be lower than other countries in the MENA region due to its high aerosol concentrations and sand storms. The plants were designed to provide firm power in two cases, first as baseload, and second as intermediate load of 15 hours from 6:00 until 21:00. The hours of production were selected based on a typical average daily load profile. CSP and PV-CSP model previously developed by [3][1] were used. Ideally in the PV-CSP model, during daytime hours the PV generation is used for electricity production, covering the desired load, while CSP is used partly for electricity production and the rest for storing energy in the TES. Energy in the TES system is then used to supply firm power during both periods of low Irradiance and night hours or according to need. A PV-CCGT model has been developed which operates simultaneously, prioritizing the availability of PV while the CCGT fulfils the remaining requirement. There is a minimum loading for the CCGT plant which is determined by the minimum possible partial loading of the gas turbine restricted by the emission constraints. Accordingly, in some cases during operation PV is chosen to be curtailed due to this limitation. The main results of the techno-economic analysis are concluded in the comparative analysis of the 3 proposed power plant configurations, where the PV-CCGT plant is the most economic with minimum LCOE of 86 USD/MWh, yet, the least preferable option in terms of carbon emissions. CSP and PV-CSP provided higher LCOE, while the PV-CSP plant configuration met the same capacity factor with 11% reduction in LCOE, compared to CSP

    Combined heat and power plant flexibility - Technical and economic potential and system interaction

    Get PDF
    The share of variable renewable energy sources in electricity generation systems is expected to increase, leading to increased variability in the load that must be provided by conventional power plants or other flexibility measures. Thus, thermal power plants need to consider implementation of technical measures that enhance flexibility; to maintain profitability of operation with increased electricity price fluctuation, and to support electricity system stability. This thesis investigates the technical and economic potential for flexible operation of combined heat and power plants that deliver heat to district heating networks; in current and future Swedish energy system scenarios with varying levels of electricity price volatility. A modeling framework is developed to analyze static, dynamic, technical and economic aspects of flexible combined heat and power operation; comprising steady-state and dynamic process simulation models that are validated with reference plant measurements; and dispatch optimization models. Based on the designs of a waste-fired and a gas turbine combined cycle reference plant, two options to enhance the plant operational flexibility are analyzed: 1) product flexibility; i.e. operating the steam cycle with varying product ratios of electricity, heat and frequency response; 2) thermal flexibility, allowing the heat production to be shifted in time.The results show that flexible operation, for variable electricity generation, is technically feasible in both plant types. Operation with product and/or thermal flexibility can increase the annual plant revenue with up to 90 k€/MW by reduced fuel consumption or increased full load hours. The economic impact of increased ramp rate (operational flexibility) is marginal (<6 k€/MW). The value, and utilization, of flexibility enhancing measures increase with electricity price volatility, that benefits plants with a wide load span for electricity generation and motivates a shift in operating strategy from the traditional heat-following production planning to electricity-following operation

    Combined heat and power operational modes for increased product flexibility in a waste incineration plant

    Get PDF
    The expected strong expansion of wind power may cause challenges for the electricity system in terms of grid stability, power balance, and increased electricity price volatility. This paper analyses how the new market conditions impact the operational pattern and revenue of a combined heat and power (CHP) plant. The work focuses on product flexibility that enables varied ratios between products; and thermal flexibility, to shift load in time given the differing timescales of heat and power demand. Product flexibility is given by five operational modes: conventional CHP, heat-only, CHP plus frequency response, condensing, and condensing plus frequency response. Optimization and process modeling are combined to study the plant dispatch in current and future electricity market scenarios and with thermal flexibility. The results indicate that load-shifting of heat generation together with condensing operation can increase revenue up to 4.5 M€ and plant utilization up to 100% for a 50 MWel waste-fired plant; but requires a thermal energy storage to meet hourly heat demand. The electricity price profile impacts both the revenue and operational patterns, with low-price periods favoring increased heat generation and frequency response delivery. High average electricity price and price volatility results in increased profitability of product and thermal flexibility

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Modelling District Heating in a Renewable Electricity System

    Get PDF
    With the decarbonisation of electricity generation, large scale heat pumps are becoming increasingly viable for district heating combined with thermal energy storage, district heating can provide flexibility to the electricity grid by decoupling demand from supply. This thesis examines how district heating with heat pumps and thermal energy storage can integrate with and provide a benefit to an electricity system with predominantly renewable generation. The scope of work comprises three interlinked models underpinned by the same set of meteorology data, fundamentally coupling supply and demand. First, heat load data are surveyed, and an hourly demand profile is simulated. Disaggregation of district heating loads from the national demand is accomplished via segmentation of the building stock to model heat demand at high spatiotemporal resolution. Second, a novel method of pricing hourly electricity in a zero carbon, capital-intensive renewable system with electricity storage is developed and applied to a dispatch simulation to generate hourly electricity prices. Third, a dynamic model of district heating is constructed to simulate the meeting of heat loads with different design configurations using electricity as the energy source. Model predictive control is applied with varying forecast horizons so as to minimise the cost of electricity to meet the heat demand given a time series of hourly prices and consequently optimising the capacity of thermal energy storage. It was found that a thermal energy storage capacity equivalent to 1.3% of annual demand is sufficient to minimise operating costs. Finally, the potential impact of district heating on balancing the electricity system is analysed and an equivalence between thermal and electric storage is examined. While this is highly dependent on annual conditions, it can be as much as 3.5 units of thermal storage for every unit of electrical grid storage on the system. This could potentially reduce the investment in grid storage by £36 billion, underlining the significant financial benefits of thermal storage to the whole system. The research highlights the important potential of district heating to the UK’s energy system strategy

    供給と需要側を考慮した電源システムのモデリングと評価

    Get PDF
    Modelling and optimization of sustainable power system and energy network are becoming complex engineering. Demand side resources also need to be planned considering characteristics of district energy supply scenario. This research first analyzes the feasibility of VPP based on scenario of Chongming Island. VPP focuses on expansion of renewable energy and upgrade of efficient appliances, results verify the effectiveness of the VPP concept. Then investigates the techno-economic viability of high variable renewable integration. PV-PHS dispatch scenarious are carried out with constraints, PHS effectively recovers the suppression and decreases the PV power levelized cost. Introduction PV-PHS shifts merit order curve to right, decreasing power generating cost. Thirdly, cost and environmental benefits of optimal designed decentralized energy systems were investigated. Scheduled distributed energy resources could be optimized to benefit the public grid. Performance of dynamic price is investigated based on the social demonstration project experiment. Finally, the conclusions are provided.北九州市立大
    corecore