159 research outputs found

    Sparse neural networks with large learning diversity

    Full text link
    Coded recurrent neural networks with three levels of sparsity are introduced. The first level is related to the size of messages, much smaller than the number of available neurons. The second one is provided by a particular coding rule, acting as a local constraint in the neural activity. The third one is a characteristic of the low final connection density of the network after the learning phase. Though the proposed network is very simple since it is based on binary neurons and binary connections, it is able to learn a large number of messages and recall them, even in presence of strong erasures. The performance of the network is assessed as a classifier and as an associative memory

    Energy Relaxation For Hopfield Network With The New Learning Rule.

    Get PDF
    In this paper, the time for energy relaxation for Little Hopfield neural network using the new activation rule is shown to be better than the relaxation time using Hebbian learning

    New Insights on Learning Rules for Hopfield Networks: Memory and Objective Function Minimisation

    Full text link
    Hopfield neural networks are a possible basis for modelling associative memory in living organisms. After summarising previous studies in the field, we take a new look at learning rules, exhibiting them as descent-type algorithms for various cost functions. We also propose several new cost functions suitable for learning. We discuss the role of biases (the external inputs) in the learning process in Hopfield networks. Furthermore, we apply Newtons method for learning memories, and experimentally compare the performances of various learning rules. Finally, to add to the debate whether allowing connections of a neuron to itself enhances memory capacity, we numerically investigate the effects of self coupling. Keywords: Hopfield Networks, associative memory, content addressable memory, learning rules, gradient descent, attractor networksComment: 8 pages, IEEE-Xplore, 2020 International Joint Conference on Neural Networks (IJCNN), Glasgo

    Hierarchical Associative Memory Based on Oscillatory Neural Network

    Get PDF
    In this thesis we explore algorithms and develop architectures based on emerging nano-device technologies for cognitive computing tasks such as recognition, classification, and vision. In particular we focus on pattern matching in high dimensional vector spaces to address the nearest neighbor search problem. Recent progress in nanotechnology provides us novel nano-devices with special nonlinear response characteristics that fit cognitive tasks better than general purpose computing. We build an associative memory (AM) by weakly coupling nano-oscillators as an oscillatory neural network and design a hierarchical tree structure to organize groups of AM units. For hierarchical recognition, we first examine an architecture where image patterns are partitioned into different receptive fields and processed by individual AM units in lower levels, and then abstracted using sparse coding techniques for recognition at higher levels. A second tree structure model is developed as a more scalable AM architecture for large data sets. In this model, patterns are classified by hierarchical k-means clustering and organized in hierarchical clusters. Then the recognition process is done by comparison between the input patterns and centroids identified in the clustering process. The tree is explored in a "depth-only" manner until the closest image pattern is output. We also extend this search technique to incorporate a branch-and-bound algorithm. The models and corresponding algorithms are tested on two standard face recognition data-sets. We show that the depth-only hierarchical model is very data-set dependent and performs with 97% or 67% recognition when compared to a single large associative memory, while the branch and bound search increases time by only a factor of two compared to the depth-only search

    Analysing and enhancing the performance of associative memory architectures

    Get PDF
    This thesis investigates the way in which information about the structure of a set of training data with 'natural' characteristics may be used to positively influence the design of associative memory neural network models of the Hopfield type. This is done with a view to reducing the level of connectivity in models of this type. There are three strands to this work. Firstly, an empirical evaluation of the implementation of existing theory is given. Secondly, a number of existing theories are combined to produce novel network models and training regimes. Thirdly, new strategies for constructing and training associative memories based on knowledge of the structure of the training data are proposed. The first conclusion of this work is that, under certain circumstances, performance benefits may be gained by establishing the connectivity in a non-random fashion, guided by the knowledge gained from the structure of the training data. These performance improvements exist in relation to networks in which sparse connectivity is established in a purely random manner. This dilution occurs prior to the training of the network. Secondly, it is verified that, as predicted by existing theory, targeted post-training dilution of network connectivity provides greater performance when compared with networks in which connections are removed at random. Finally, an existing tool for the analysis of the attractor performance of neural networks of this type has been modified and improved. Furthermore, a novel, comprehensive performance analysis tool is proposed

    AHA! an 'Artificial Hippocampal Algorithm' for Episodic Machine Learning

    Full text link
    The majority of ML research concerns slow, statistical learning of i.i.d. samples from large, labelled datasets. Animals do not learn this way. An enviable characteristic of animal learning is `episodic' learning - the ability to memorise a specific experience as a composition of existing concepts, after just one experience, without provided labels. The new knowledge can then be used to distinguish between similar experiences, to generalise between classes, and to selectively consolidate to long-term memory. The Hippocampus is known to be vital to these abilities. AHA is a biologically-plausible computational model of the Hippocampus. Unlike most machine learning models, AHA is trained without external labels and uses only local credit assignment. We demonstrate AHA in a superset of the Omniglot one-shot classification benchmark. The extended benchmark covers a wider range of known hippocampal functions by testing pattern separation, completion, and recall of original input. These functions are all performed within a single configuration of the computational model. Despite these constraints, image classification results are comparable to conventional deep convolutional ANNs

    The Performance of Associative Memory Models with Biologically Inspired Connectivity

    Get PDF
    This thesis is concerned with one important question in artificial neural networks, that is, how biologically inspired connectivity of a network affects its associative memory performance. In recent years, research on the mammalian cerebral cortex, which has the main responsibility for the associative memory function in the brains, suggests that the connectivity of this cortical network is far from fully connected, which is commonly assumed in traditional associative memory models. It is found to be a sparse network with interesting connectivity characteristics such as the “small world network” characteristics, represented by short Mean Path Length, high Clustering Coefficient, and high Global and Local Efficiency. Most of the networks in this thesis are therefore sparsely connected. There is, however, no conclusive evidence of how these different connectivity characteristics affect the associative memory performance of a network. This thesis addresses this question using networks with different types of connectivity, which are inspired from biological evidences. The findings of this programme are unexpected and important. Results show that the performance of a non-spiking associative memory model is found to be predicted by its linear correlation with the Clustering Coefficient of the network, regardless of the detailed connectivity patterns. This is particularly important because the Clustering Coefficient is a static measure of one aspect of connectivity, whilst the associative memory performance reflects the result of a complex dynamic process. On the other hand, this research reveals that improvements in the performance of a network do not necessarily directly rely on an increase in the network’s wiring cost. Therefore it is possible to construct networks with high associative memory performance but relatively low wiring cost. Particularly, Gaussian distributed connectivity in a network is found to achieve the best performance with the lowest wiring cost, in all examined connectivity models. Our results from this programme also suggest that a modular network with an appropriate configuration of Gaussian distributed connectivity, both internal to each module and across modules, can perform nearly as well as the Gaussian distributed non-modular network. Finally, a comparison between non-spiking and spiking associative memory models suggests that in terms of associative memory performance, the implication of connectivity seems to transcend the details of the actual neural models, that is, whether they are spiking or non-spiking neurons
    corecore