2,592 research outputs found

    Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links

    Full text link
    Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are currently being investigated. In this presentation, recent results regarding the performance of multicell processing and user cooperation under the assumption of limited-capacity interbase station and inter-user links, respectively, are reviewed. The survey focuses on related results derived for non-fading uplink and downlink channels of simple cellular system models. The analytical treatment, facilitated by these simple setups, enhances the insight into the limitations imposed by limited-capacity constraints on the gains achievable by cooperative techniques

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    On the optimization of distributed compression in multirelay cooperative networks

    Get PDF
    In this paper, we consider multirelay cooperative networks for the Rayleigh fading channel, where each relay, upon receiving its own channel observation, independently compresses it and forwards the compressed information to the destination. Although the compression at each relay is distributed using Wyner-Ziv coding, there exists an opportunity for jointly optimizing compression at multiple relays to maximize the achievable rate. Considering Gaussian signaling, a primal optimization problem is formulated accordingly. We prove that the primal problem can be solved by resorting to its Lagrangian dual problem, and an iterative optimization algorithm is proposed. The analysis is further extended to a hybrid scheme, where the employed forwarding scheme depends on the decoding status of each relay. The relays that are capable of successful decoding perform a decode-and-forward (DF) scheme, and the rest conduct distributed compression. The hybrid scheme allows the cooperative network to adapt to the changes of the channel conditions and benefit from an enhanced level of flexibility. Numerical results from both spectrum and energy efficiency perspectives show that the joint optimization improves efficiency of compression and identify the scenarios where the proposed schemes outperform the conventional forwarding schemes. The findings provide important insights into the optimal deployment of relays in a realistic cellular network

    Physical-layer Network Coding in Two-Way Heterogeneous Cellular Networks with Power Imbalance

    Get PDF
    The growing demand for high-speed data, quality of service ( QoS) assurance, and energy efficiency has triggered the evolution of fourth-generation ( 4G) Long-Term Evolution-Advanced ( LTE-A) networks to fifth generation ( 5G) and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding ( PNC), which is a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximizing relay selection algorithm for a single cell with multiple relays assuming the decode-and-forward ( DF) strategy. With nodes transmitting at different powers, the proposed algorithm adapts the resource allocation according to the differing link rates, and we prove theoretically that the optimization problem is log-concave. The proposed technique is shown to perform significantly better than the widely studied selection-cooperation technique. We then undertake an experimental study-on a software radio platform-of the decoding performance of PNC with unbalanced signal-to-noise ratios ( SNRs) in the multiple-access transmissions. This problem is inherent in cellular networks, and it is shown that, with channel coding and decoders based on multiuser detection and successive interference cancellation, the performance is better with power imbalance. This paper paves the way for further research on multicell PNC, resource allocation, and the implementation of PNC with higher order modulations and advanced coding techniques.Toshiba Research Europe Ltd.; U.K. Research Council; General Research Funds [414812]; AoE [E-02/08]SCI(E)[email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]
    corecore