110 research outputs found

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    NASA Tech Briefs, May 2011

    Get PDF
    Topics covered include: 1) Method to Estimate the Dissolved Air Content in Hydraulic Fluid; 2) Method for Measuring Collimator-Pointing Sensitivity to Temperature Changes; 3) High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence; 4)Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope; 5) On-Wafer S-Parameter Measurements in the 325-508-GHz Band; 6) Reconfigurable Microwave Phase Delay Element for Frequency Reference and Phase-Shifter Applications; 7) High-Speed Isolation Board for Flight Hardware Testing; 8) High-Throughput, Adaptive FFT Architecture for FPGA-Based Spaceborne Data Processors; 9) 3D Orbit Visualization for Earth-Observing Missions; 10) MaROS: Web Visualization of Mars Orbiting and Landed Assets; 11) RAPID: Collaborative Commanding and Monitoring of Lunar Assets; 12) Image Segmentation, Registration, Compression, and Matching; 13) Image Calibration; 14) Rapid ISS Power Availability Simulator; 15) A Method of Strengthening Composite/Metal Joints; 16) Pre-Finishing of SiC for Optical Applications; 17) Optimization of Indium Bump Morphology for Improved Flip Chip Devices; 18) Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures; 19) Marshall Convergent Spray Formulation Improvement for High Temperatures; 20) Real-Time Deposition Monitor for Ultrathin Conductive Films; 21) Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive; 22) Radiation-Resistant Hybrid Lotus Effect for Achieving Photoelectrocatalytic Self-Cleaning Anticontamination Coatings; 23) Improved, Low-Stress Economical Submerged Pipeline; 24) Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter; 25) Local Leak Detection and Health Monitoring of Pressurized Tanks; 26) Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging; 27) Automated Cryocooler Monitor and Control System; 28) Broadband Achromatic Phase Shifter for a Nulling Interferometer; 29) Super Dwarf Wheat for Growth in Confined Spaces; 30) Fine Guidance Sensing for Coronagraphic Observatories; 31) Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver; 32) Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping; 33) Optical Communications Link to Airborne Transceiver; 34) Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings; 35) Entanglement in Self-Supervised Dynamics; 36) Prioritized LT Codes; 37) Fast Image Texture Classification Using Decision Trees; 38) Constraint Embedding Technique for Multibody System Dynamics; 39) Improved Systematic Pointing Error Model for the DSN Antennas; 40) Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks; 41) More-Accurate Model of Flows in Rocket Injectors; 42) In-Orbit Instrument-Pointing Calibration Using the Moon as a Target; 43) Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures; 44) Six Degrees-of-Freedom Ascent Control for Small-Body Touch and Go; and 45) Optical-Path-Difference Linear Mechanism for the Panchromatic Fourier Transform Spectrometer

    High Bit Rate Wireless and Fiber-Based Terahertz Communication

    Get PDF
    RÉSUMÉ Dans le spectre électromagnétique, la bande des térahertz s’étend de 100 GHz à 10 THz (longueurs d’onde de 3 mm à 30 μm). Des décennies auparavant, le spectre des THz était connu sous le nom de « gap térahertz » en raison de l’indisponibilité de sources et détecteurs efficaces à ces fréquences. Depuis quelques années, la science a évolué pour faire migrer la technologie THz des laboratoires aux produits commerciaux. Il existe plusieurs applications des ondes THz en imagerie, spectroscopie et communications. Dans cette thèse, nous nous intéressons aux communications THz à travers deux objectifs. Le premier objectif est de développer une source THz de haute performance dédiée aux communications et basée sur les technologies optiques avec des produits commerciaux uniquement. Le second objectif est de démontrer l’utilisation de fibres optiques afin de renforcer la robustesse des communications THz sans fil. Nous débutons cette thèse avec une revue de la littérature scientifique sur le sujet de la communications THz sans fil et filaire. D’abord, nous discutons des deux méthodes communément utilisées (électronique et optique) pour démontrer des liens de communications THz avec leurs avantages et inconvénients. Nous présentons par la suite la possibilité d’utiliser un système de spectroscopie THz pour des applications en communications avec des modifications mineures au montage. Nous présentons ensuite plusieurs applications gourmandes en bande passante qui pourraient bénéficier du spectre THz, incluant la diffusion en continu (streaming) de flux vidéo aux résolutions HD et 4K non compressés. Ensuite, nous discutons de la motivation d’utiliser de longues fibres THz et notamment du fait qu’elles ne sont pas destinées à remplacer les fibres optiques conventionnelles de l’infrarouge, mais plutôt à augmenter la robustesse des liens THz sans fil. En particulier, les fibres THz peuvent être utilisées pour garantir le lien de communication dans des environnements géométriques complexes ou difficile à atteindre, ainsi que pour immuniser le lien THz aux attaques de sécurité. Plusieurs designs de fibres et guides d’onde précédemment démontrées dans la littérature sont discutés avec, entre autres, leurs méthodes de fabrication respectives. Nous discutons ensuite de la possibilité d’utiliser un simple guide d’onde diélectrique et sous-longueur d’onde pour transmettre l’information à un débit de l’ordre de plusieurs Gbps sur une distance de quelques mètres.----------ABSTRACT The Terahertz (THz) spectral range spans from 100 GHz to 10 THz (wavelength: 3 mm to 30 μm) in the electromagnetic spectrum. Decades ago, the THz spectral range is often named as ‘THz gap’ due to the non-availability of efficient THz sources and detectors. In the recent years, the science has evolved in bringing the THz technology from lab scale to commercial products. There are several potential applications of THz frequency band such as imaging, spectroscopy and communication. In this thesis, we focus on THz communications by addressing two objectives. The first objective is to develop a high-performance photonics-based THz communication system using all commercially available components. The second objective is to demonstrate the THz-fiber based communications, which can be used to increase the reliability of THz wireless links. We begin this thesis with a scientific literature review on the subject of THz wireless and fiber-based communications. First, the two different methodologies (all electronics based and photonics-based THz system) that is commonly used in the demonstration of THz communications is discussed along with their advantages and challenges. We then present the flexibility of photonics-based THz system where it is possible to switch it with minor modifications for THz spectroscopic studies and THz communication applications. Several bandwidth hungry applications that demands the use of THz spectrum for next generation communications is detailed. This includes the streaming of uncompressed HD/4K and beyond high-resolution videos, where the THz spectrum can be beneficial. Next, the motivation of using long THz fibers is discussed and we convince the readers that the THz fibers are not meant to replace the fibers in the optical-infrared region but to increase the reliability of THz wireless links. Particularly, the THz fibers can be used to provide connectivity in complex geometrical environments, secure communications and signal delivery to hard-to-reach areas. Several novel fiber/waveguide designs along with their fabrication technologies from the literature are presented. We then show that a simple solid core dielectric subwavelength fiber can be used to transmit the information in the order of several Gbps to a distance of a few meters

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system
    • …
    corecore