515 research outputs found

    Personalising Vibrotactile Displays through Perceptual Sensitivity Adjustment

    Get PDF
    Haptic displays are commonly limited to transmitting a discrete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the linear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and personalisation through sensitivity adjustment increased decoding precision

    HapticHead - Augmenting Reality via Tactile Cues

    Get PDF
    Information overload is increasingly becoming a challenge in today's world. Humans have only a limited amount of attention to allocate between sensory channels and tend to miss or misjudge critical sensory information when multiple activities are going on at the same time. For example, people may miss the sound of an approaching car when walking across the street while looking at their smartphones. Some sensory channels may also be impaired due to congenital or acquired conditions. Among sensory channels, touch is often experienced as obtrusive, especially when it occurs unexpectedly. Since tactile actuators can simulate touch, targeted tactile stimuli can provide users of virtual reality and augmented reality environments with important information for navigation, guidance, alerts, and notifications. In this dissertation, a tactile user interface around the head is presented to relieve or replace a potentially impaired visual channel, called \emph{HapticHead}. It is a high-resolution, omnidirectional, vibrotactile display that presents general, 3D directional, and distance information through dynamic tactile patterns. The head is well suited for tactile feedback because it is sensitive to mechanical stimuli and provides a large spherical surface area that enables the display of precise 3D information and allows the user to intuitively rotate the head in the direction of a stimulus based on natural mapping. Basic research on tactile perception on the head and studies on various use cases of head-based tactile feedback are presented in this thesis. Several investigations and user studies have been conducted on (a) the funneling illusion and localization accuracy of tactile stimuli around the head, (b) the ability of people to discriminate between different tactile patterns on the head, (c) approaches to designing tactile patterns for complex arrays of actuators, (d) increasing the immersion and presence level of virtual reality applications, and (e) assisting people with visual impairments in guidance and micro-navigation. In summary, tactile feedback around the head was found to be highly valuable as an additional information channel in various application scenarios. Most notable is the navigation of visually impaired individuals through a micro-navigation obstacle course, which is an order of magnitude more accurate than the previous state-of-the-art, which used a tactile belt as a feedback modality. The HapticHead tactile user interface's ability to safely navigate people with visual impairments around obstacles and on stairs with a mean deviation from the optimal path of less than 6~cm may ultimately improve the quality of life for many people with visual impairments.Die InformationsĂŒberlastung wird in der heutigen Welt zunehmend zu einer Herausforderung. Der Mensch hat nur eine begrenzte Menge an Aufmerksamkeit, die er zwischen den SinneskanĂ€len aufteilen kann, und neigt dazu, kritische Sinnesinformationen zu verpassen oder falsch einzuschĂ€tzen, wenn mehrere AktivitĂ€ten gleichzeitig ablaufen. Zum Beispiel können Menschen das GerĂ€usch eines herannahenden Autos ĂŒberhören, wenn sie ĂŒber die Straße gehen und dabei auf ihr Smartphone schauen. Einige SinneskanĂ€le können auch aufgrund von angeborenen oder erworbenen Erkrankungen beeintrĂ€chtigt sein. Unter den SinneskanĂ€len wird BerĂŒhrung oft als aufdringlich empfunden, besonders wenn sie unerwartet auftritt. Da taktile Aktoren BerĂŒhrungen simulieren können, können gezielte taktile Reize den Benutzern von Virtual- und Augmented Reality Anwendungen wichtige Informationen fĂŒr die Navigation, FĂŒhrung, Warnungen und Benachrichtigungen liefern. In dieser Dissertation wird eine taktile BenutzeroberflĂ€che um den Kopf herum prĂ€sentiert, um einen möglicherweise beeintrĂ€chtigten visuellen Kanal zu entlasten oder zu ersetzen, genannt \emph{HapticHead}. Es handelt sich um ein hochauflösendes, omnidirektionales, vibrotaktiles Display, das allgemeine, 3D-Richtungs- und Entfernungsinformationen durch dynamische taktile Muster darstellt. Der Kopf eignet sich gut fĂŒr taktiles Feedback, da er empfindlich auf mechanische Reize reagiert und eine große sphĂ€rische OberflĂ€che bietet, die die Darstellung prĂ€ziser 3D-Informationen ermöglicht und es dem Benutzer erlaubt, den Kopf aufgrund der natĂŒrlichen Zuordnung intuitiv in die Richtung eines Reizes zu drehen. Grundlagenforschung zur taktilen Wahrnehmung am Kopf und Studien zu verschiedenen AnwendungsfĂ€llen von kopfbasiertem taktilem Feedback werden in dieser Arbeit vorgestellt. Mehrere Untersuchungen und Nutzerstudien wurden durchgefĂŒhrt zu (a) der Funneling Illusion und der Lokalisierungsgenauigkeit von taktilen Reizen am Kopf, (b) der FĂ€higkeit von Menschen, zwischen verschiedenen taktilen Mustern am Kopf zu unterscheiden, (c) AnsĂ€tzen zur Gestaltung taktiler Muster fĂŒr komplexe Arrays von Aktoren, (d) der Erhöhung des Immersions- und PrĂ€senzgrades von Virtual-Reality-Anwendungen und (e) der UnterstĂŒtzung von Menschen mit Sehbehinderungen bei der FĂŒhrung und Mikronavigation. Zusammenfassend wurde festgestellt, dass taktiles Feedback um den Kopf herum als zusĂ€tzlicher Informationskanal in verschiedenen Anwendungsszenarien sehr wertvoll ist. Am interessantesten ist die Navigation von sehbehinderten Personen durch einen Mikronavigations-Hindernisparcours, welche um eine GrĂ¶ĂŸenordnung prĂ€ziser ist als der bisherige Stand der Technik, der einen taktilen GĂŒrtel als Feedback-ModalitĂ€t verwendete. Die FĂ€higkeit der taktilen Benutzerschnittstelle HapticHead, Menschen mit Sehbehinderungen mit einer mittleren Abweichung vom optimalen Pfad von weniger als 6~cm sicher um Hindernisse und auf Treppen zu navigieren, kann letztendlich die LebensqualitĂ€t vieler Menschen mit Sehbehinderungen verbessern

    A tactile communication system for navigation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaves 42-43).A vibrotactile display for use in navigation has been designed and evaluated. The arm and the torso, which offer relatively large and flat surface areas, were chosen as locations for the displays. The ability of subjects to identify patterns of vibrotactile stimulation on the arm and torso was tested in a series of experiments using the vibrotactile displays. A variety of patterns of stimulation was evaluated to determine which was most effective, and the efficacy of two types of motors (pancake and cylindrical) was compared. The arm display was tested with sedentary subjects in the laboratory, and the torso display was tested both in the laboratory with sedentary subjects and outdoors with active subjects. The results indicated that identification of the vibrotactile patterns was superior on the torso as compared to the forearm, with subjects achieving 99-100% accuracy with seven of the eight patterns presented. The torso display was equally effective for both sedentary and active subjects.by Erin M. Piateski.S.M

    A Comparison of the Effects of Haptic and Visual Feedback on Presence in Virtual Reality

    Get PDF
    In the current consumer market, Virtual reality experiences are predominantly generated through visual and auditory feedback. Haptics are not yet well established, but are increasingly introduced to enhance the user’s sense of ‘reality’. With haptic (vibrotactile) feedback now part of the built-in mechanism of VR consumer devices, there is an urgent need to understand how different modalities work together to improve the user experience. This paper reports an experiment that explores the contributions made to participants’ sense of presence by haptic and visual feedback in a virtual environment. Participants experienced a virtual ball bouncing on a virtual stick resting across their avatar hands. We found that presence was enhanced when they could both see and feel the ball’s action; with a strong suggestion that haptic feedback alone gave rise to a greater sense of presence than visual alone. Similarly, whilst visual or bimodal feedback enhanced participants’ ability to locate where the ball bounced on the stick, our results suggest that the action itself was more readily discerned haptically than visually

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    HapticSnakes: multi-haptic feedback wearable robots for immersive virtual reality

    Get PDF
    Haptic feedback plays a large role in enhancing immersion and presence in VR. However, previous research and commercial products have limitations in terms of variety and locations of delivered feedbacks. To address these challenges, we present HapticSnakes, which are snake-like waist-worn robots that can deliver multiple types of feedback in various body locations, including taps-, gestures-, airflow-, brushing- and gripper-based feedbacks. We developed two robots, one is lightweight and suitable for taps and gestures, while the other is capable of multiple types of feedback. We presented a design space based on our implementations and conducted two evaluations. Since taps are versatile, easy to deliver and largely unexplored, our first evaluation focused on distinguishability of tap strengths and locations on the front and back torso. Participants had highest accuracy in distinguishing feedback on the uppermost regions and had superior overall accuracy in distinguishing feedback strengths over locations. Our second user study investigated HapticSnakes' ability to deliver multiple feedback types within VR experiences, as well as users' impressions of wearing our robots and receiving novel feedback in VR. The results indicate that participants had distinct preferences for feedbacks and were in favor of using our robots throughout. Based on the results of our evaluations, we extract design considerations and discuss research challenges and opportunities for developing multi-haptic feedback robots. - 2019, The Author(s).Open Access funding provided by the Qatar National Library. The presented work is supported in part through Program for Leading Graduate Schools, “Graduate Program for Embodiment Informatics” by Japan’s Ministry of Education, Culture, Sports, Science and Technology. We would also like to thank Mr. Thomas Höglund for his contribution to the mechanical design and control software of the HapticSnakes system.Scopu

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Touch- and Walkable Virtual Reality to Support Blind and Visually Impaired Peoples‘ Building Exploration in the Context of Orientation and Mobility

    Get PDF
    Der Zugang zu digitalen Inhalten und Informationen wird immer wichtiger fĂŒr eine erfolgreiche Teilnahme an der heutigen, zunehmend digitalisierten Zivilgesellschaft. Solche Informationen werden meist visuell prĂ€sentiert, was den Zugang fĂŒr blinde und sehbehinderte Menschen einschrĂ€nkt. Die grundlegendste Barriere ist oft die elementare Orientierung und MobilitĂ€t (und folglich die soziale MobilitĂ€t), einschließlich der Erlangung von Kenntnissen ĂŒber unbekannte GebĂ€ude vor deren Besuch. Um solche Barrieren zu ĂŒberbrĂŒcken, sollten technische Hilfsmittel entwickelt und eingesetzt werden. Es ist ein Kompromiss zwischen technologisch niedrigschwellig zugĂ€nglichen und verbreitbaren Hilfsmitteln und interaktiv-adaptiven, aber komplexen Systemen erforderlich. Die Anpassung der Technologie der virtuellen RealitĂ€t (VR) umfasst ein breites Spektrum an Entwicklungs- und Entscheidungsoptionen. Die Hauptvorteile der VR-Technologie sind die erhöhte InteraktivitĂ€t, die Aktualisierbarkeit und die Möglichkeit, virtuelle RĂ€ume und Modelle als Abbilder von realen RĂ€umen zu erkunden, ohne dass reale Gefahren und die begrenzte VerfĂŒgbarkeit von sehenden Helfern auftreten. Virtuelle Objekte und Umgebungen haben jedoch keine physische Beschaffenheit. Ziel dieser Arbeit ist es daher zu erforschen, welche VR-Interaktionsformen sinnvoll sind (d.h. ein angemessenes Verbreitungspotenzial bieten), um virtuelle ReprĂ€sentationen realer GebĂ€ude im Kontext von Orientierung und MobilitĂ€t berĂŒhrbar oder begehbar zu machen. Obwohl es bereits inhaltlich und technisch disjunkte Entwicklungen und Evaluationen zur VR-Technologie gibt, fehlt es an empirischer Evidenz. ZusĂ€tzlich bietet diese Arbeit einen Überblick ĂŒber die verschiedenen Interaktionen. Nach einer Betrachtung der menschlichen Physiologie, Hilfsmittel (z.B. taktile Karten) und technologischen Eigenschaften wird der aktuelle Stand der Technik von VR vorgestellt und die Anwendung fĂŒr blinde und sehbehinderte Nutzer und der Weg dorthin durch die EinfĂŒhrung einer neuartigen Taxonomie diskutiert. Neben der Interaktion selbst werden Merkmale des Nutzers und des GerĂ€ts, der Anwendungskontext oder die nutzerzentrierte Entwicklung bzw. Evaluation als Klassifikatoren herangezogen. BegrĂŒndet und motiviert werden die folgenden Kapitel durch explorative AnsĂ€tze, d.h. im Bereich 'small scale' (mit sogenannten Datenhandschuhen) und im Bereich 'large scale' (mit einer avatargesteuerten VR-Fortbewegung). Die folgenden Kapitel fĂŒhren empirische Studien mit blinden und sehbehinderten Nutzern durch und geben einen formativen Einblick, wie virtuelle Objekte in Reichweite der HĂ€nde mit haptischem Feedback erfasst werden können und wie verschiedene Arten der VR-Fortbewegung zur Erkundung virtueller Umgebungen eingesetzt werden können. Daraus werden gerĂ€teunabhĂ€ngige technologische Möglichkeiten und auch Herausforderungen fĂŒr weitere Verbesserungen abgeleitet. Auf der Grundlage dieser Erkenntnisse kann sich die weitere Forschung auf Aspekte wie die spezifische Gestaltung interaktiver Elemente, zeitlich und rĂ€umlich kollaborative Anwendungsszenarien und die Evaluation eines gesamten Anwendungsworkflows (d.h. Scannen der realen Umgebung und virtuelle Erkundung zu Trainingszwecken sowie die Gestaltung der gesamten Anwendung in einer langfristig barrierefreien Weise) konzentrieren.Access to digital content and information is becoming increasingly important for successful participation in today's increasingly digitized civil society. Such information is mostly presented visually, which restricts access for blind and visually impaired people. The most fundamental barrier is often basic orientation and mobility (and consequently, social mobility), including gaining knowledge about unknown buildings before visiting them. To bridge such barriers, technological aids should be developed and deployed. A trade-off is needed between technologically low-threshold accessible and disseminable aids and interactive-adaptive but complex systems. The adaptation of virtual reality (VR) technology spans a wide range of development and decision options. The main benefits of VR technology are increased interactivity, updatability, and the possibility to explore virtual spaces as proxies of real ones without real-world hazards and the limited availability of sighted assistants. However, virtual objects and environments have no physicality. Therefore, this thesis aims to research which VR interaction forms are reasonable (i.e., offering a reasonable dissemination potential) to make virtual representations of real buildings touchable or walkable in the context of orientation and mobility. Although there are already content and technology disjunctive developments and evaluations on VR technology, there is a lack of empirical evidence. Additionally, this thesis provides a survey between different interactions. Having considered the human physiology, assistive media (e.g., tactile maps), and technological characteristics, the current state of the art of VR is introduced, and the application for blind and visually impaired users and the way to get there is discussed by introducing a novel taxonomy. In addition to the interaction itself, characteristics of the user and the device, the application context, or the user-centered development respectively evaluation are used as classifiers. Thus, the following chapters are justified and motivated by explorative approaches, i.e., in the group of 'small scale' (using so-called data gloves) and in the scale of 'large scale' (using an avatar-controlled VR locomotion) approaches. The following chapters conduct empirical studies with blind and visually impaired users and give formative insight into how virtual objects within hands' reach can be grasped using haptic feedback and how different kinds of VR locomotion implementation can be applied to explore virtual environments. Thus, device-independent technological possibilities and also challenges for further improvements are derived. On the basis of this knowledge, subsequent research can be focused on aspects such as the specific design of interactive elements, temporally and spatially collaborative application scenarios, and the evaluation of an entire application workflow (i.e., scanning the real environment and exploring it virtually for training purposes, as well as designing the entire application in a long-term accessible manner)

    Investigation of dynamic three-dimensional tangible touchscreens: Usability and feasibility

    Get PDF
    The ability for touchscreen controls to move from two physical dimensions to three dimensions may soon be possible. Though solutions exist for enhanced tactile touchscreen interaction using vibrotactile devices, no definitive commercial solution yet exists for providing real, physical shape to the virtual buttons on a touchscreen display. Of the many next steps in interface technology, this paper concentrates on the path leading to tangible, dynamic, touchscreen surfaces. An experiment was performed that explores the usage differences between a flat surface touchscreen and one augmented with raised surface controls. The results were mixed. The combination of tactile-visual modalities had a negative effect on task completion time when visual attention was focused on a single task (single target task time increased by 8% and the serial target task time increased by 6%). On the other hand, the dual modality had a positive effect on error rate when visual attention was divided between two tasks (the serial target error rate decreased by 50%). In addition to the experiment, this study also investigated the feasibility of creating a dynamic, three dimensional, tangible touchscreen. A new interface solution may be possible by inverting the traditional touchscreen architecture and integrating emerging technologies such as organic light emitting diode (OLED) displays and electrorheological fluid based tactile pins
    • 

    corecore