136 research outputs found

    Directional Routing Techniques in VANET

    Get PDF
    Vehicle Ad hoc Networks (VANET) emerged as a subset of the Mobile Ad hoc Network (MANET) application; it is considered to be a substantial approach to the ITS (Intelligent Transportation System). VANETs were introduced to support drivers and improve safety issues and driving comfort, as a step towards constructing a safer, cleaner and more intelligent environment. At the present time vehicles are equipped with a number of sensors and devices, including On Board Units (OBU); this enables vehicles to sense situations affecting other vehicles and manage communications, by exploiting infrastructures such as the Road Side Unit (RSU); creating a Vehicle to Infrastructure (V2I) pathway, or interacting directly with other vehicles creating a Vehicle to Vehicle (V2V) pathway. Owing to the lack of infrastructures and difficulties involved in providing comprehensive coverage for all roads because of the high expense associated with installation, the investigation in this research concentrates on the V2V communication type rather than theV2I communication type. Many challenges have emerged in VANET, encouraging researchers to investigate their research in an attempt to meet these challenges. Routing protocol issues are considered to be a critical dilemma that needs to be tackled in VANET, particularly in a sparse environment, by designing an effcient routing mechanism that impacts on enhancing network performance in terms of disseminating messages to a desireddestination, balancing the generated packet (overhead) on the network and increasing the ratio of packet delivery with a reduced time delay. VANET has some unique characteristics compared to MANET; specifically it includes high mobility and constrained patterns restricted by roads, which lead to generation of a disconnected area occurring continuously between vehicles creating a Delay Tolerant Network (DTN). This is in opposition to applying the multi-hope technique properly to deliver the packet to its desire destination. The aim in this thesis comprises two main contributions. First developing novel routing protocols for a sparse environment in VANET with the context of utilising the mobility feature, with the aid of the equipped devices, such as Global Position System (GPS) and Navigation System (NS). This approach exploits the knowledge of Second Heading Direction (SHD), which represents the knowledge of the next road direction the vehicle is intending to take, in order to increase the packet delivery ratio, and to increase the route stability by decreasing instances of route breakage. This approach comprises two approaches; the first approach was designed for a highway scenario, by selecting the next hop node based on a filtration process, to forward the packet to the desired destination, while the second approach was developed for the intersection and roundabout scenario, in order to deliver the packet to the destination (unknown location). The formalising and specification of the VSHDRP has been performed using the CCA (Calculus of Context-aware Ambient), in order to evaluate the protocols behaviours, the protocol has been validated using the ccaPL. In addition the performance of the VSHDRP has been evaluated using the NS-2 simulator; comparing it with Greedy Perimeter Stateless Routing (GPSR) protocol, to reveal the strengths and weaknesses of the protocol. Second, developing a novel approach to broadcasting the HELLO beacon message adaptively in VANET based on the node's circumstances (direction and speed), in order to minimise the broadcasting of unnecessary HELLO beacon messages. A novel architecture has been built based on the adaptive HELLO beacon message, which clarifies how the OBU components are interacting with the connected sensors, in order to portray any changes in the vehicle's circumstances, so as to take the right decision to determine appropriate action. This architecture has been built based on the concept of a context aware system, which divides the architecture into three main phases; sensing processing and acting

    A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

    Get PDF
    Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a node’s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes

    Previous hop routing: exploiting opportunism in VANETs

    Get PDF
    Routing in highly dynamic wireless networks such as Vehicular Ad-hoc Networks (VANETs) is a challenging task due to frequent topology changes. Sustaining a transmission path between peers in such network environment is difficult. In this thesis, Previous Hop Routing (PHR) is poposed; an opportunistic forwarding protocol exploiting previous hop information and distance to destination to make the forwarding decision on a packet-by-packet basis. It is intended for use in highly dynamic network where the life time of a hop-by-hop path between source and destination nodes is short. Exploiting the broadcast nature of wireless communication avoids the need to copy packets, and enables redundant paths to be formed. To save network resources, especially under high network loads, PHR employs probabilistic forwarding. The forwarding probability is calculated based on the perceived network load as measured by the arrival rate at the network interface. We evaluate PHR in an urban VANET environment using NS2 (for network traffic) and SUMO (for vehicular movement) simulators, with scenarios configured to re ect real-world conditions. The simulation scenarios are configured to use two velocity profiles i.e. Low and high velocity. The results show that the PHR networks able to achieve best performance as measured by Packet Delivery Ratio (PDR) and Drop Burst Length (DBL) compared to conventional routing protocols in high velocity scenarios

    Spatial Multipath Location Aided Routing

    Get PDF
    Mobile ad-hoc networks (MANETs) are infrastructure-free networks of mobile nodes that communicate with each other wirelessly. There are several routing schemes that have been proposed and several of these have been already extensively simulated or implemented as well. The primary applications of such networks have been in disaster relief operations, military use, conferencing and environment sensing. There are several ad hoc routing algorithms at present that utilize position information (usually in two dimensional terms) to make routing decisions at each node. Our goal is to utilize three-dimensional (3D) position information to provide more reliable as well as efficient routing for certain applications. We thus describe extensions to various location aware routing algorithms to work in 3D. We propose a new hierarchical, zone-based 3D routing algorithm, based on GRID by Liao, Tseng and Sheu. Our new algorithm called Hyper-GRID is a hybrid algorithm that uses multipath routing (alternate path caching) in 3D. We propose replacing LAR with Multipath LAR (MLAR) in GRID. We have implemented MLAR and are validating MLAR through simulation using ns-2 and studying its efficiency, scalability and other properties. We use a random waypoint mobility model and compare our MLAR approach versus LAR, AODV and AOMDV in both 2D and 3D for a range of traffic and mobility scenarios. Our simulation results demonstrate the performance benefits of MLAR over LAR and AODV in most mobility situations. AOMDV delivers more packets than MLAR consistently, but does so at the cost of more frequent flooding of control packets and thus higher bandwidth usage than MLAR

    Contribution to the design of VANET routing protocols for realistic urban environments

    Get PDF
    One of the main concerns of the cities' administration is mobility management. In Intelligent Transportation Systems (ITS), pedestrians, vehicles and public transportation systems could share information and react to any situation in the city. The information sensed by vehicles could be useful for other vehicles and for the mobility authorities. Vehicular Ad hoc Networks (VANETs) make possible the communication between vehicles (V2I) and also between vehicles and fixed infrastructure (V2I) managed by the city's authorities. In addition, VANET routing protocols minimize the use of fixed infrastructure since they employ multi-hop V2V communication to reach reporting access points of the city. This thesis aims to contribute in the design of VANET routing protocols to enable reporting services (e.g., vehicular traffic notifications) in urban environments. The first step to achieve this global objective has been the study of components and tools to mimic a realistic VANET scenario. Moreover, we have analyzed the impact of the realism of each one of those components in the simulation results. Then, we have improved the Address Resolution procedure in VANETs by including it in the routing signaling messages. Our approach simplifies the VANET operation and increases the packet delivery ratio as consequence. Afterwards, we have tackled the issue of having duplicate packets in unicast communications and we have proposed routing filters to lower their presence. This way we have been able to increase the available bandwidth and reduce the average packet delay with a slight increase of the packet losses. Besides, we have proposed a Multi-Metric Map aware routing protocol (MMMR) that incorporates four routing metrics (distance, trajectory, vehicle density and available bandwidth) to take the forwarding decisions. With the aim of increasing the number of delivered packets in MMMR, we have developed a Geographical Heuristic Routing (GHR) algorithm. GHR integrates Tabu and Simulated Annealing heuristic optimization techniques to adapt its behavior to the specific scenario characteristics. GHR is generic because it could use any geographical routing protocol to take the forwarding decisions. Additionally, we have designed an easy to implement forwarding strategy based on an extended topology information area of two hops, called 2-hops Geographical Anycast Routing (2hGAR) protocol. Results show that controlled randomness introduced by GHR improves the default operation of MMMR. On the other hand, 2hGAR presents lower delays than GHR and higher packet delivery ratio, especially in high density scenarios. Finally, we have proposed two mixed (integer and linear) optimization models to detect the best positions in the city to locate the Road Side Units (RSUs) which are in charge of gathering all the reporting information generated by vehicles.Una de las principales preocupaciones en la administración de las ciudades es la gestión de la movilidad de sus vehículos, debido a los problemas de tráfico como atascos y accidentes. En los sistemas inteligentes de transporte (SIT), peatones, vehículos y transporte público podrán compartir información y adaptarse a cualquier situación que suceda en la ciudad. La información obtenida por los sensores de los vehículos puede ser útil para otros vehículos y para las autoridades de movilidad. Las redes ad hoc vehiculares (VANETs) hacen posible la comunicación entre los propios vehículos (V2V) y entre vehículos y la infraestructura fija de la red de la ciudad (V2I). Asimismo, los protocolos de encaminamiento para redes vehiculares minimizan el uso de infraestructura fija de red, ya que los protocolos de encaminamiento VANET emplean comunicaciones multisalto entre vehículos para encaminar los mensajes hasta los puntos de acceso de la red en la ciudad. El objetivo de esta tesis doctoral es contribuir en el diseño de protocolos de encaminamiento en redes ad hoc vehiculares para servicios de notificaciones (p.ej. reportes del estado del tráfico) en entornos urbanos. El primer paso para alcanzar este objetivo general ha sido el estudio de componentes y herramientas para simular un escenario realista de red ad hoc vehicular. Además, se ha analizado el impacto del nivel de realismo de cada uno de los componentes de simulación en los resultados obtenidos. Así también, se ha propuesto un mecanismo de resolución de direcciones automático y coherente para redes VANET a través del uso de los propios mensajes de señalización de los protocolos de encaminamiento. Esta mejora simplifica la operación de una red ad hoc vehicular y como consecuencia aumenta la tasa de recepción de paquetes. A continuación, se ha abordado el problema de la aparición inesperada de paquetes de datos duplicados en una comunicación punto a punto. Para ello, se ha propuesto el filtrado de paquetes duplicados a nivel del protocolo de encaminamiento. Esto ha producido un incremento del ancho disponible en el canal y una reducción del retardo medio en la trasmisión de un paquete, a costa de un mínimo aumento de la pérdida de paquetes. Por otra parte, hemos propuesto un protocolo de encaminamiento multi-métrica MMMR (Multi-Metric Map-aware Routing protocol), el cual incorpora cuatro métricas (distancia al destino, trayectoria, densidad de vehículos y ancho de banda) en las decisiones de encaminamiento. Con el objetivo de aumentar la tasa de entrega de paquetes en MMMR, hemos desarrollado un algoritmo heurístico de encaminamiento geográfico denominado GHR (Geographical Heuristic Routing). Esta propuesta integra las técnicas de optimización Tabu y Simulated Annealing, que permiten a GHR adaptarse a las características específicas del escenario. Adicionalmente, hemos propuesto 2hGAR (2-hops Geographical Anycast Routing), un protocolo de encaminamiento anycast que emplea información de la topología de red a dos saltos de distancia para tomar la decisión de encaminamiento de los mensajes. Los resultados muestran que la aleatoriedad controlada de GHR en su operación mejora el rendimiento de MMMR. Asimismo, 2hGAR presenta retardos de paquete menores a los obtenidos por GHR y una mayor tasa de paquetes entregados, especialmente en escenarios con alta densidad de vehículos. Finalmente, se han propuesto dos modelos de optimización mixtos (enteros y lineales) para detectar los mejores lugares de la ciudad donde ubicar los puntos de acceso de la red, los cuales se encargan de recolectar los reportes generados por los vehículos.Postprint (published version

    Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    Get PDF
    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some specific characteristics, as the very high speed of nodes. Due to this high speed the topology changes are frequent and the communication links may last only a few seconds. Smart cities are now a reality and have a direct relationship with vehicular networks. With the help of existing infrastructure such as traffic lights, we propose a scheme to update and analyse traffic density and a warning system to spread alert messages. With this, traffic lights assist vehicular networks to take proper decisions. This would ensure less congested streets. It would also be possible that the routing protocol forwards data packets to vehicles on streets with enough neighbours to increase the possibility of delivering the packets to destination. Sharing updated, reliable and real-time information, about traffic conditions, weather or security alerts, increases the need of algorithms for the dissemination of information that take into account the main beneffits and constraints of these networks. For all this, routing protocols for vehicular networks have the difficult task to select and establish transmission links to send the data packets from source to destination through multiple nodes using intermediate vehicles efficiently. The main objective of this thesis is to provide improvements in the communication framework for vehicular networks to improve decisions to select next hops in the moment to send information, in this way improving the exchange of information to provide suitable communication to minimize accidents, reduce congestion, optimize resources for emergencies, etc. Also, we include intelligence to vehicles at the moment to take routing decisions. Making them map-aware, being conscious of the presence of buildings and other obstacles in urban environments. Furthermore, our proposal considers the decision to store packets for a maximum time until finding other neighbouring nodes to forward the packets before discarding them. For this, we propose a protocol that considers multiple metrics that we call MMMR (A Multimetric, Map-Aware Routing Protocol ). MMMR is a protocol based on geographical knowledge of the environment and vehicle location. The metrics considered are the distance, the density of vehicles in transmission range, the available bandwidth and the future trajectory of the neighbouring nodes. This allows us to have a complete view of the vehicular scenario to anticipate the driver about possible changes that may occur. Thus, a node can select a node among all its neighbours, which is the best option to increase the likelihood of successful packet delivery, minimizing time and offering a level of quality and service. In the same way, being aware of the increase of information in wireless environments, we analyse the possibility of offering anonymity services. We include a mechanism of anonymity in routing protocols based on the Crowd algorithm, which uses the idea of hiding the original source of a packet. This allowed us to add some level of anonymity on VANET routing protocols. The analytical modeling of the available bandwidth between nodes in a VANET, the use of city infrastructure in a smart way, the forwarding selection in data routing byvehicles and the provision of anonymity in communications, are issues that have been addressed in this PhD thesis. In our research work we provide contributions to improve the communication framework for Vehicular Ad hoc Networks obtaining benefits toenhance the everyday of the population.La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc Networks), permiten a un grupo de nodos móviles tanto configurar como mantener una red temporal por si mismos sin la necesidad de una infraestructura fija. Las redes vehiculares presentan algunas características muy representativas, por ejemplo, la alta velocidad que pueden alcanzar los nodos, en este caso vehículos. Debido a esta alta velocidad la topología cambia frecuentemente y la duración de los enlaces de comunicación puede ser de unos pocos segundos. Estas redes tienen una amplia área de aplicación, pudiendo tener comunicación entre los mismos nodos (V2V) o entre los vehículos y una infraestructura fija (V2I). Uno de los principales desafíos existentes en las VANET es la seguridad vial donde el gobierno y fabricantes de automóviles han centrado principalmente sus esfuerzos. Gracias a la rápida evolución de las tecnologías de comunicación inalámbrica los investigadores han logrado introducir las redes vehiculares dentro de las comunicaciones diarias permitiendo una amplia variedad de servicios para ofrecer. Las ciudades inteligentes son ahora una realidad y tienen una relación directa con las redes vehiculares. Con la ayuda de la infraestructura existente, como semáforos, se propone un sistema de análisis de densidad de tráfico y mensajes de alerta. Con esto, los semáforos ayudan a la red vehicular en la toma de decisiones. Así se logrará disponer de calles menos congestionadas para hacer una circulación más fluida (lo cual disminuye la contaminación). Además, sería posible que el protocolo de encaminamiento de datos elija vehículos en calles con suficientes vecinos para incrementar la posibilidad de entregar los paquetes al destino (minimizando pérdidas de información). El compartir información actualizada, confiable y en tiempo real sobre el estado del tráfico, clima o alertas de seguridad, aumenta la necesidad de algoritmos de difusión de la información que consideren los principales beneficios y restricciones de estas redes. Así mismo, considerar servicios críticos que necesiten un nivel de calidad y servicio es otro desafío importante. Por todo esto, un protocolo de encaminamiento para este tipo de redes tiene la difícil tarea de seleccionar y establecer enlaces de transmisión para enviar los datos desde el origen hacia el destino vía múltiples nodos utilizando vehículos intermedios de una manera eficiente. El principal objetivo de esta tesis es ofrecer mejoras en los sistemas de comunicación vehicular que mejoren la toma de decisiones en el momento de realizar el envío de la información, con lo cual se mejora el intercambio de información para poder ofrecer comunicación oportuna que minimice accidentes, reduzca atascos, optimice los recursos destinados a emergencias, etc. Así mismo, incluimos más inteligencia a los coches en el momento de tomar decisiones de encaminamiento de paquetes. Haciéndolos conscientes de la presencia de edificios y otros obstáculos en los entornos urbanos. Así como tomar la decisión de guardar paquetes durante un tiempo máximo de modo que se encuentre otros nodos vecinos para encaminar paquetes de información antes de descartarlo. Para esto, proponemos un protocolo basado en múltiples métricas (MMMR, A Multimetric, Map-aware Routing Protocol ) que es un protocolo geográfio basado en el conocimiento del entorno y localización de los vehículos. Las métricas consideradas son la distancia, la densidad de vehículos en el área de transmisión, el ancho de banda disponible y la trayectoria futura de los nodos vecinos. Esto nos permite tener una visión completa del escenario vehicular y anticiparnos a los posibles cambios que puedan suceder. Así, un nodo podrá seleccionar aquel nodo entre todos sus vecinos posibles que sea la mejor opción para incrementar la posibilidad de entrega exitosa de paquetes, minimizando tiempos y ofreciendo un cierto nivel de calidad y servicio. De la misma manera, conscientes del incremento de información que circula por medios inalámbricos, se analizó la posibilidad de servicios de anonimato. Incluimos pues un mecanismo de anonimato en protocolos de encaminamiento basado en el algoritmo Crowd, que se basa en la idea de ocultar la fuente original de un paquete. Esto nos permitió añadir cierto nivel de anonimato que pueden ofrecer los protocolos de encaminamiento. El modelado analítico del ancho de banda disponible entre nodos de una VANET, el uso de la infraestructura de la ciudad de una manera inteligente, la adecuada toma de decisiones de encaminamiento de datos por parte de los vehículos y la disposición de anonimato en las comunicaciones, son problemas que han sido abordados en este trabajo de tesis doctoral que ofrece contribuciones a la mejora de las comunicaciones en redes vehiculares en entornos urbanos aportando beneficios en el desarrollo de la vida diaria de la población

    SIMULATION AND ANALYSIS OF VEHICULAR AD-HOC NETWORKS IN URBAN AND RURAL AREAS

    Get PDF
    According to the American National Highway Traffic Safety Administration, in 2010, there were an estimated 5,419,000 police-reported traffic crashes, in which 32,885 people were killed and 2,239,000 people were injured in the US alone. Vehicular Ad-Hoc Network (VANET) is an emerging technology which promises to decrease car accidents by providing several safety related services such as blind spot, forward collision and sudden braking ahead warnings. Unfortunately, research of VANET is hindered by the extremely high cost and complexity of field testing. Hence it becomes important to simulate VANET protocols and applications thoroughly before attempting to implement them. This thesis studies the feasibility of common mobility and wireless channel models in VANET simulation and provides a general overview of the currently available VANET simulators and their features. Six different simulation scenarios are performed to evaluate the performance of AODV, DSDV, DSR and OLSR Ad-Hoc routing protocols with UDP and TCP packets. Simulation results indicate that reactive protocols are more robust and suitable for the highly dynamic VANET networks. Furthermore, TCP is found to be more suitable for VANET safety applications due to the high delay and packet drop of UDP packets.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest
    corecore