27,254 research outputs found

    A case for merging the ILP and DLP paradigms

    Get PDF
    The goal of this paper is to show that instruction level parallelism (ILP) and data-level parallelism (DLP) can be merged in a single architecture to execute vectorizable code at a performance level that can not be achieved using either paradigm on its own. We will show that the combination of the two techniques yields very high performance at a low cost and a low complexity. We will show that this architecture can reach a performance equivalent to a superscalar processor that sustained 10 instructions per cycle. We will see that the machine exploiting both types of parallelism improves upon the ILP-only machine by factors of 1.5-1.8. We also present a study on the scalability of both paradigms and show that, when we increase resources to reach a 16-issue machine, the advantage of the ILP+DLP machine over the ILP-only machine increases up to 2.0-3.45. While the peak achieved IPC for the ILP machine is 4, the ILP+DLP machine exceeds 10 instructions per cycle.Peer ReviewedPostprint (published version

    Evaluating kernels on Xeon Phi to accelerate Gysela application

    Get PDF
    This work describes the challenges presented by porting parts ofthe Gysela code to the Intel Xeon Phi coprocessor, as well as techniques used for optimization, vectorization and tuning that can be applied to other applications. We evaluate the performance of somegeneric micro-benchmark on Phi versus Intel Sandy Bridge. Several interpolation kernels useful for the Gysela application are analyzed and the performance are shown. Some memory-bound and compute-bound kernels are accelerated by a factor 2 on the Phi device compared to Sandy architecture. Nevertheless, it is hard, if not impossible, to reach a large fraction of the peek performance on the Phi device,especially for real-life applications as Gysela. A collateral benefit of this optimization and tuning work is that the execution time of Gysela (using 4D advections) has decreased on a standard architecture such as Intel Sandy Bridge.Comment: submitted to ESAIM proceedings for CEMRACS 2014 summer school version reviewe

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor
    • …
    corecore