271 research outputs found

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    Learning Robust Radio Frequency Fingerprints Using Deep Convolutional Neural Networks

    Get PDF
    Radio Frequency Fingerprinting (RFF) techniques, which attribute uniquely identifiable signal distortions to emitters via Machine Learning (ML) classifiers, are limited by fingerprint variability under different operational conditions. First, this work studied the effect of frequency channel for typical RFF techniques. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models leads to deterioration in MCC to under 0.05 (random guess), indicating that single-channel models are inadequate for realistic operation. Second, this work presented a novel way of studying fingerprint variability through Fingerprint Extraction through Distortion Reconstruction (FEDR), a neural network-based approach for quantifying signal distortions in a relative distortion latent space. Coupled with a Dense network, FEDR fingerprints were evaluated against common RFF techniques for up to 100 unseen classes, where FEDR achieved best performance with MCC ranging from 0.945 (5 classes) to 0.746 (100 classes), using 73% fewer training parameters than the next-best technique

    DeepCSI: Rethinking Wi-Fi Radio Fingerprinting Through MU-MIMO CSI Feedback Deep Learning

    Full text link
    We present DeepCSI, a novel approach to Wi-Fi radio fingerprinting (RFP) which leverages standard-compliant beamforming feedback matrices to authenticate MU-MIMO Wi-Fi devices on the move. By capturing unique imperfections in off-the-shelf radio circuitry, RFP techniques can identify wireless devices directly at the physical layer, allowing low-latency low-energy cryptography-free authentication. However, existing Wi-Fi RFP techniques are based on software-defined radio (SDRs), which may ultimately prevent their widespread adoption. Moreover, it is unclear whether existing strategies can work in the presence of MU-MIMO transmitters - a key technology in modern Wi-Fi standards. Conversely from prior work, DeepCSI does not require SDR technologies and can be run on any low-cost Wi-Fi device to authenticate MU-MIMO transmitters. Our key intuition is that imperfections in the transmitter's radio circuitry percolate onto the beamforming feedback matrix, and thus RFP can be performed without explicit channel state information (CSI) computation. DeepCSI is robust to inter-stream and inter-user interference being the beamforming feedback not affected by those phenomena. We extensively evaluate the performance of DeepCSI through a massive data collection campaign performed in the wild with off-the-shelf equipment, where 10 MU-MIMO Wi-Fi radios emit signals in different positions. Experimental results indicate that DeepCSI correctly identifies the transmitter with an accuracy of up to 98%. The identification accuracy remains above 82% when the device moves within the environment. To allow replicability and provide a performance benchmark, we pledge to share the 800 GB datasets - collected in static and, for the first time, dynamic conditions - and the code database with the community.Comment: To be presented at the 42nd IEEE International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, July 10-13, 202

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    WLAN-paikannuksen elinkaaren tukeminen

    Get PDF
    The advent of GPS positioning at the turn of the millennium provided consumers with worldwide access to outdoor location information. For the purposes of indoor positioning, however, the GPS signal rarely penetrates buildings well enough to maintain the same level of positioning granularity as outdoors. Arriving around the same time, wireless local area networks (WLAN) have gained widespread support both in terms of infrastructure deployments and client proliferation. A promising approach to bridge the location context then has been positioning based on WLAN signals. In addition to being readily available in most environments needing support for location information, the adoption of a WLAN positioning system is financially low-cost compared to dedicated infrastructure approaches, partly due to operating on an unlicensed frequency band. Furthermore, the accuracy provided by this approach is enough for a wide range of location-based services, such as navigation and location-aware advertisements. In spite of this attractive proposition and extensive research in both academia and industry, WLAN positioning has yet to become the de facto choice for indoor positioning. This is despite over 20 000 publications and the foundation of several companies. The main reasons for this include: (i) the cost of deployment, and re-deployment, which is often significant, if not prohibitive, in terms of work hours; (ii) the complex propagation of the wireless signal, which -- through interaction with the environment -- renders it inherently stochastic; (iii) the use of an unlicensed frequency band, which means the wireless medium faces fierce competition by other technologies, and even unintentional radiators, that can impair traffic in unforeseen ways and impact positioning accuracy. This thesis addresses these issues by developing novel solutions for reducing the effort of deployment, including optimizing the indoor location topology for the use of WLAN positioning, as well as automatically detecting sources of cross-technology interference. These contributions pave the way for WLAN positioning to become as ubiquitous as the underlying technology.GPS-paikannus avattiin julkiseen käyttöön vuosituhannen vaihteessa, jonka jälkeen sitä on voinut käyttää sijainnin paikantamiseen ulkotiloissa kaikkialla maailmassa. Sisätiloissa GPS-signaali kuitenkin harvoin läpäisee rakennuksia kyllin hyvin voidakseen tarjota vastaavaa paikannustarkkuutta. Langattomat lähiverkot (WLAN), mukaan lukien tukiasemat ja käyttölaitteet, yleistyivät nopeasti samoihin aikoihin. Näiden verkkojen signaalien käyttö on siksi alusta asti tarjonnut lupaavia mahdollisuuksia sisätilapaikannukseen. Useimmissa ympäristöissä on jo valmiit WLAN-verkot, joten paikannuksen käyttöönotto on edullista verrattuna järjestelmiin, jotka vaativat erillisen laitteiston. Tämä johtuu osittain lisenssivapaasta taajuusalueesta, joka mahdollistaa kohtuuhintaiset päätelaitteet. WLAN-paikannuksen tarjoama tarkkuus on lisäksi riittävä monille sijaintipohjaisille palveluille, kuten suunnistamiselle ja paikkatietoisille mainoksille. Näistä lupaavista alkuasetelmista ja laajasta tutkimuksesta huolimatta WLAN-paikannus ei ole kuitenkaan pystynyt lunastamaan paikkaansa pääasiallisena sisätilapaikannusmenetelmänä. Vaivannäöstä ei ole puutetta; vuosien saatossa on julkaistu yli 20 000 tieteellistä artikkelia sekä perustettu useita yrityksiä. Syitä tähän kehitykseen on useita. Ensinnäkin, paikannuksen pystyttäminen ja ylläpito vaativat aikaa ja vaivaa. Toiseksi, langattoman signaalin eteneminen ja vuorovaikutus ympäristön kanssa on hyvin monimutkaista, mikä tekee mallintamisesta vaikeaa. Kolmanneksi, eri teknologiat ja laitteet kilpailevat lisenssivapaan taajuusalueen käytöstä, mikä johtaa satunnaisiin paikannustarkkuuteen vaikuttaviin tietoliikennehäiriöihin. Väitöskirja esittelee uusia menetelmiä joilla voidaan merkittävästi pienentää paikannusjärjestelmän asennuskustannuksia, jakaa ympäristö automaattisesti osiin WLAN-paikannusta varten, sekä tunnistaa mahdolliset langattomat häiriölähteet. Nämä kehitysaskeleet edesauttavat WLAN-paikannuksen yleistymistä jokapäiväiseen käyttöön

    RF Fingerprinting Unmanned Aerial Vehicles

    Get PDF
    As unmanned aerial vehicles (UAVs) continue to become more readily available, their use in civil, military, and commercial applications is growing significantly. From aerial surveillance to search-and-rescue to package delivery the use cases of UAVs are accelerating. This accelerating popularity gives rise to numerous attack possibilities for example impersonation attacks in drone-based delivery, in a UAV swarm, etc. In order to ensure drone security, in this project we propose an authentication system based on RF fingerprinting. Specifically, we extract and use the device-specific hardware impairments embedded in the transmitted RF signal to separate the identity of each UAV. To achieve this goal, AlexNet with the data augmentation technique was employed
    corecore