1,693 research outputs found

    Chemical applications of escience to interfacial spectroscopy

    No full text
    This report is a summary of works carried out by the author between October 2003 and September 2004, in the first year of his PhD studie

    Overlay networks for smart grids

    Get PDF

    Analysis and Mitigation of Recent Attacks on Mobile Communication Backend

    Get PDF
    2014 aasta viimases kvartalis demonstreeriti mitmeid edukaid rünnakuid mobiilsidevõrkude vastu. Need baseerusid ühe peamise signaaliprotokolli, SS7 väärkasutamisel. Ründajatel õnnestus positsioneerida mobiilseadmete kasutajaid ja kuulata pealt nii kõnesid kui ka tekstisõnumeid. Ajal mil enamik viimase aja ründeid paljastavad nõrkusi lõppkasutajate seadmete tarkvaras, paljastavad need hiljutised rünnakud põhivõrkude endi haavatavust. Teadaolevalt on mobiilsete telekommunikatsioonivõrkude tööstuses raskusi haavatavuste õigeaegsel avastamisel ja nende mõistmisel. Käesolev töö on osa püüdlusest neid probleeme mõista. Töö annab põhjaliku ülevaate ja analüüsib teadaolevaid rünnakuid ning toob välja võimalikud lahendused. Rünnakud võivad olla väga suurte tagajärgedega, kuna vaatamata SS7 protokolli vanusele, jääb see siiski peamiseks signaaliprotokolliks mobiilsidevõrkudes veel pikaks ajaks. Uurimustöö analüüs ja tulemused aitavad mobiilsideoperaatoritel hinnata oma võrkude haavatavust ning teha paremaid investeeringuid oma taristu turvalisusele. Tulemused esitletakse mobiilsideoperaatoritele, võrguseadmete müüjatele ning 3GPP standardi organisatsioonile.In the last quarter of 2014, several successful attacks against mobile networks were demonstrated. They are based on misuse of one of the key signaling protocol, SS7, which is extensively used in the mobile communication backend for signaling tasks such as call and mobility management. The attackers were able to locate the mobile users and intercept voice calls and text messages. While most attacks in the public eye are those which exploits weaknesses in the end-device software or radio access links, these recently demonstrated vulnerabilities exploit weaknesses of the mobile core networks themselves. Understandably, there is a scramble in the mobile telecommunications industry to understand the attacks and the underlying vulnerabilities. This thesis is part of that effort. This thesis presents a broad and thorough overview and analysis of the known attacks against mobile network signaling protocols and the possible mitigation strategies. The attacks are presented in a uniform way, in relation to the mobile network protocol standards and signaling scenarios. Moreover, this thesis also presents a new attack that enables a malicious party with access to the signaling network to remove lost or stolen phones from the blacklist that is intended to prevent their use. Both the known and new attacks have been confirmed by implementing them in a controlled test environment. The attacks are serious because SS7, despite its age, remains the main signaling protocol in the mobile networks and will still long be required for interoperability and background compatibility in international roaming. Moreover, the number of entities with access to the core network, and hence the number of potential attackers, has increased significantly because of changes in regulation and opening of the networks to competition. The analysis and new results of this thesis will help mobile network providers and operators to assess the vulnerabilities in their infrastructure and to make security-aware decisions regarding their future investments and standardization. The results will be presented to the operators, network-equipment vendors, and to the 3GPP standards body

    Security Measure to Detect and Avoid Flooding Attacks using Multi-Agent System in MANETS

    Get PDF
    Security is considered as one of the major challenge when it comes to infrastructure less and self dependent network without any centralized control. The vulnerability of Adhoc Network makes it susceptible to external attacks like flooding of hello messages or propagating fake routing messages etc. Such attacks generates a variety of problems like disturbing the network by flooding messages that results in waste of battery which is a vital resource to maintain the life span of the network. Most importantly cause agents to die when unable to reach destination due to fake routing messages causing a heavy loss on part of the nodes generating them to maintain the route knowledge.  The paper proposes a novel technique to identify the flooding attack and measure to overcome them using Multi-Agent system

    AN ANALYSIS OF VOICE OVER INTERNET PROTOCOL (VOIP) AND ITS SECURITY IMPLEMENTATION

    Get PDF
    Voice over Internet Protocol (VoIP) has been in existence for a number of years but only quite recently has it developed into mass adoption. As VoIP technology penetrates worldwide telecommunications markets, the advancements achieved in performance, cost reduction, and feature supportmake VoIP a convincingproposition for service providers, equipment manufacturers, and end users. Since the introduction of mass-market VoIP services over broadband Internet in 2004, security and safeguarding are becoming a more important obligation in VoIP solutions. The purpose of this final year project is to study and analyze VoIP and implement the security aspect using Secure Real-time Transport Protocol (SRTP) end-to-end media encryption in the Universiti Teknologi PETRONAS (UTP) laboratory. Extensive research, evaluation of case studies, literature reviews, network analysis, as well as testing and experimentation are the methods employed in achieving a secure and reliable VoIP network. With the given time frame and adequate resources, the study and analysis of VoIP and implementation of SRTP should prove to be very successful

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Security Policy Management for a Cooperative Firewall

    Get PDF
    Increasing popularity of the Internet service and increased number of connected devices along with the introduction of IoT are making the society ever more dependent on the Internet services availability. Therefore, we need to ensure the minimum level of security and reliability of services. Ultra-Reliable Communication (URC) refers to the availability of life and business critical services nearly 100 percent of the time. These requirements are an integral part of upcoming 5th generation (5G) mobile networks. 5G is the future mobile network, which at the same time is part of the future Internet. As an extension to the conventional communication architecture, 5G needs to provide ultra-high reliability of services where; it needs to perform better than the currently available solutions in terms of security, confidentiality, integrity and reliability and it should mitigate the risks of Internet attack and malicious activities. To achieve such requirements, Customer Edge Switching (CES) architecture is presented. It proposes that the Internet user’s agent in the network provider needs to have prior information about the expected traffic of users to mitigate maximum attacks and only allow expected communication between hosts. CES executes communication security policies of each user or device acting as the user’s agent. The policy describes with fine granularity what traffic is expected by the device. The policies are sourced as automatically as possible but can also be modified by the user. Stored policies will follow the mobile user and will be executed at the network edge node executing Customer Edge Switch functions to stop all unexpected traffic from entering the mobile network. State-of-the-art in mobile network architectures utilizes the Quality of Service (QoS) policies of users. This thesis motivates the extension of current architecture to accommodate security and communication policy of end-users. The thesis presents an experimental implementation of a policy management system which is termed as Security Policy Management (SPM) to handle above-mentioned policies of users. We describe the architecture, implementation and integration of SPM with the Customer Edge Switching. Additionally, SPM has been evaluated in terms of performance, scalability, reliability and security offered via 5G customer edge nodes. Finally, the system has been analyzed for feasibility in the 5G architecture
    corecore