17,069 research outputs found

    Restructuring the rotor analysis program C-60

    Get PDF
    The continuing evolution of the rotary wing industry demands increasing analytical capabilities. To keep up with this demand, software must be structured to accommodate change. The approach discussed for meeting this demand is to restructure an existing analysis. The motivational factors, basic principles, application techniques, and practical lessons from experience with this restructuring effort are reviewed

    Modification of kraft wood-pulp fibre with silica for surface functionalisation

    Get PDF
    A new science strategy for natural fibre modification was devised in which glass surface properties would be imparted to wood-derived fibre. The enhancements known from addition of silane reagents to glass fibre–polymer composites could therefore be realised for modified cellulose fibre–polymer composites. A process is described whereby the internal void spaces and micropores of never-dried Kraft pulp fibre walls were impregnated with silica. This was achieved by initial dehydration of never-dried fibre through azeotropic distillation to achieve substitution of fibre water with the silicon chemical solution over a range of concentrations. Kraft fibres were stiffened and made resistant to collapse from the effect of the azeotrope drying. Specific chemical reaction of azeotrope-dried fibre with the reagent ClSi(OEt)3 followed by base-catalysed hydrolysis of the ester groups formed a fibre-bound silica composite. The physico-chemical substitution of water from micropores and internal voids of never-dried fibre with property-modifying chemicals offers possibilities in the development of new fibre characteristics, including fibres which may be hardened, plasticised, and/or stabilised against moisture, biodegradation or fire. The embedded silica may also be used as sites of attachment for coupling agents to modify the hydrophilic character of the fibre or to functionalise the fibre surface

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Modeling structural change in spatial system dynamics: A Daisyworld example

    Get PDF
    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world
    corecore