4,014 research outputs found

    Robust Distributed Speech Recognition Using Auditory Modelling

    Get PDF

    Recognizing GSM Digital Speech

    Get PDF
    The Global System for Mobile (GSM) environment encompasses three main problems for automatic speech recognition (ASR) systems: noisy scenarios, source coding distortion, and transmission errors. The first one has already received much attention; however, source coding distortion and transmission errors must be explicitly addressed. In this paper, we propose an alternative front-end for speech recognition over GSM networks. This front-end is specially conceived to be effective against source coding distortion and transmission errors. Specifically, we suggest extracting the recognition feature vectors directly from the encoded speech (i.e., the bitstream) instead of decoding it and subsequently extracting the feature vectors. This approach offers two significant advantages. First, the recognition system is only affected by the quantization distortion of the spectral envelope. Thus, we are avoiding the influence of other sources of distortion as a result of the encoding-decoding process. Second, when transmission errors occur, our front-end becomes more effective since it is not affected by errors in bits allocated to the excitation signal. We have considered the half and the full-rate standard codecs and compared the proposed front-end with the conventional approach in two ASR tasks, namely, speaker-independent isolated digit recognition and speaker-independent continuous speech recognition. In general, our approach outperforms the conventional procedure, for a variety of simulated channel conditions. Furthermore, the disparity increases as the network conditions worsen

    SISTEMI PER LA MOBILITĂ€ DEGLI UTENTI E DEGLI APPLICATIVI IN RETI WIRED E WIRELESS

    Get PDF
    The words mobility and network are found together in many contexts. The issue alone of modeling geographical user mobility in wireless networks has countless applications. Depending on one’s background, the concept is investigated with very different tools and aims. Moreover, the last decade saw also a growing interest in code mobility, i.e. the possibility for soft-ware applications (or parts thereof) to migrate and keeps working in different devices and environ-ments. A notable real-life and successful application is distributed computing, which under certain hypothesis can void the need of expensive supercomputers. The general rationale is splitting a very demanding computing task into a large number of independent sub-problems, each addressable by limited-power machines, weakly connected (typically through the Internet, the quintessence of a wired network). Following this lines of thought, we organized this thesis in two distinct and independent parts: Part I It deals with audio fingerprinting, and a special emphasis is put on the application of broadcast mon-itoring and on the implementation aspects. Although the problem is tackled from many sides, one of the most prominent difficulties is the high computing power required for the task. We thus devised and operated a distributed-computing solution, which is described in detail. Tests were conducted on the computing cluster available at the Department of Engineering of the University of Ferrara. Part II It focuses instead on wireless networks. Even if the approach is quite general, the stress is on WiFi networks. More specifically, we tried to evaluate how mobile-users’ experience can be improved. Two tools are considered. In the first place, we wrote a packet-level simulator and used it to esti-mate the impact of pricing strategies in allocating the bandwidth resource, finding out the need for such solutions. Secondly, we developed a high-level simulator that strongly advises to deepen the topic of user cooperation for the selection of the “best” point of access, when many are available. We also propose one such policy

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed
    • …
    corecore