17,351 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Improving cancer subtype diagnosis and grading using clinical decision support system based on computer-aided tissue image analysis

    Get PDF
    This research focuses towards the development of a clinical decision support system (CDSS) based on cellular and tissue image analysis and classification system that improves consistency and facilitates the clinical decision making process. In a typical cancer examination, pathologists make diagnosis by manually reading morphological features in patient biopsy images, in which cancer biomarkers are highlighted by using different staining techniques. This process is subjected to pathologist's training and experience, especially when the same cancer has several subtypes (i.e. benign tumor subtype vs. malignant subtype) and the same cancer tissue biopsy contains heterogeneous morphologies in different locations. The variability in pathologist's manual reading may result in varying cancer diagnosis and treatment. This Ph.D. research aims to reduce the subjectivity and variation existing in traditional histo-pathological reading of patient tissue biopsy slides through Computer-Aided Diagnosis (CAD). Using the CAD, quantitative molecular profiling of cancer biomarkers of stained biopsy images are obtained by extracting and analyzing texture and cellular structure features. In addition, cancer sub-type classification and a semi-automatic grade scoring (i.e. clinical decision making) for improved consistency over a large number of cancer subtype images can be performed. The CAD tools do have their own limitations and in certain cases the clinicians, however, prefer systems which are flexible and take into account their individuality when necessary by providing some control rather than fully automated system. Therefore, to be able to introduce CDSS in health care, we need to understand users' perspectives and preferences on the new information technology. This forms as the basis for this research where we target to present the quantitative information acquired through the image analysis, annotate the images and provide suitable visualization which can facilitate the process of decision making in a clinical setting.PhDCommittee Chair: Dr. May D. Wang; Committee Member: Dr. Andrew N. Young; Committee Member: Dr. Anthony J. Yezzi; Committee Member: Dr. Edward J. Coyle; Committee Member: Dr. Paul Benkese

    Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions

    Get PDF
    Computer-aided diagnosis offers a promising solution to reduce variation in colonoscopy performance. Pooled miss rates for polyps are as high as 22%, and associated interval colorectal cancers after colonoscopy are of concern. Optical biopsy, whereby in-vivo classification of polyps based on enhanced imaging replaces histopathology, has not been incorporated into routine practice because it is limited by interobserver variability and generally only meets accepted standards in expert settings. Real-time decision-support software has been developed to detect and characterise polyps, and also to offer feedback on the technical quality of inspection. Some of the current algorithms, particularly with recent advances in artificial intelligence techniques, match human expert performance for optical biopsy. In this Review, we summarise the evidence for clinical applications of computer-aided diagnosis and artificial intelligence in colonoscopy
    corecore