36 research outputs found

    Automated detection of hyperreflective foci in the outer nuclear layer of the retina

    Get PDF
    PURPOSE: Hyperreflective foci are poorly understood transient elements seen on optical coherence tomography (OCT) of the retina in both healthy and diseased eyes. Systematic studies may benefit from the development of automated tools that can map and track such foci. The outer nuclear layer (ONL) of the retina is an attractive layer in which to study hyperreflective foci as it has no fixed hyperreflective elements in healthy eyes. In this study, we intended to evaluate whether automated image analysis can identify, quantify and visualize hyperreflective foci in the ONL of the retina. METHODS: This longitudinal exploratory study investigated 14 eyes of seven patients including six patients with optic neuropathy and one with mild non-proliferative diabetic retinopathy. In total, 2596 OCT B-scan were obtained. An image analysis blob detector algorithm was used to detect candidate foci, and a convolutional neural network (CNN) trained on a manually labelled subset of data was then used to select those candidate foci in the ONL that fitted the characteristics of the reference foci best. RESULTS: In the manually labelled data set, the blob detector found 2548 candidate foci, correctly detecting 350 (89%) out of 391 manually labelled reference foci. The accuracy of CNN classifier was assessed by manually splitting the 2548 candidate foci into a training and validation set. On the validation set, the classifier obtained an accuracy of 96.3%, a sensitivity of 88.4% and a specificity of 97.5% (AUC 0.989). CONCLUSION: This study demonstrated that automated image analysis and machine learning methods can be used to successfully identify, quantify and visualize hyperreflective foci in the ONL of the retina on OCT scans

    Surface Detection using Round Cut

    Get PDF

    Deep learning in ophthalmology: The technical and clinical considerations

    Get PDF
    The advent of computer graphic processing units, improvement in mathematical models and availability of big data has allowed artificial intelligence (AI) using machine learning (ML) and deep learning (DL) techniques to achieve robust performance for broad applications in social-media, the internet of things, the automotive industry and healthcare. DL systems in particular provide improved capability in image, speech and motion recognition as well as in natural language processing. In medicine, significant progress of AI and DL systems has been demonstrated in image-centric specialties such as radiology, dermatology, pathology and ophthalmology. New studies, including pre-registered prospective clinical trials, have shown DL systems are accurate and effective in detecting diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), retinopathy of prematurity, refractive error and in identifying cardiovascular risk factors and diseases, from digital fundus photographs. There is also increasing attention on the use of AI and DL systems in identifying disease features, progression and treatment response for retinal diseases such as neovascular AMD and diabetic macular edema using optical coherence tomography (OCT). Additionally, the application of ML to visual fields may be useful in detecting glaucoma progression. There are limited studies that incorporate clinical data including electronic health records, in AL and DL algorithms, and no prospective studies to demonstrate that AI and DL algorithms can predict the development of clinical eye disease. This article describes global eye disease burden, unmet needs and common conditions of public health importance for which AI and DL systems may be applicable. Technical and clinical aspects to build a DL system to address those needs, and the potential challenges for clinical adoption are discussed. AI, ML and DL will likely play a crucial role in clinical ophthalmology practice, with implications for screening, diagnosis and follow up of the major causes of vision impairment in the setting of ageing populations globally

    Two segmentation methods

    Get PDF

    Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning

    Get PDF
    The choroid layer is a vascular layer in human retina and its main function is to provide oxygen and support to the retina. Various studies have shown that the thickness of the choroid layer is correlated with the diagnosis of several ophthalmic diseases. For example, diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. Despite contemporary advances, automatic segmentation of the choroid layer remains a challenging task due to low contrast, inhomogeneous intensity, inconsistent texture and ambiguous boundaries between the choroid and sclera in Optical Coherence Tomography (OCT) images. The majority of currently implemented methods manually or semi-automatically segment out the region of interest. While many fully automatic methods exist in the context of choroid layer segmentation, more effective and accurate automatic methods are required in order to employ these methods in the clinical sector. This paper proposed and implemented an automatic method for choroid layer segmentation in OCT images using deep learning and a series of morphological operations. The aim of this research was to segment out Bruch’s Membrane (BM) and choroid layer to calculate the thickness map. BM was segmented using a series of morphological operations, whereas the choroid layer was segmented using a deep learning approach as more image statistics were required to segment accurately. Several evaluation metrics were used to test and compare the proposed method against other existing methodologies. Experimental results showed that the proposed method greatly reduced the error rate when compared with the other state-of-the art methods

    Maximization of Regional probabilities using Optimal Surface Graphs: Application to Carotid Artery Segmentation in MRI

    Get PDF
    __Purpose__ We present a segmentation method that maximizes regional probabilities enclosed by coupled surfaces using an Optimal Surface Graph (OSG) cut approach. This OSG cut determines the globally optimal solution given a graph constructed around an initial surface. While most methods for vessel wall segmentation only use edge information, we show that maximizing regional probabilities using an OSG improves the segmentation results. We applied this to automatically segment the vessel wall of the carotid artery in magnetic resonance images. __Methods__ First, voxel-wise regional probability maps were obtained using a Support Vector Machine classifier trained on local image features. Then the OSG segments the regions which maximizes the regional probabilities considering smoothness and topological constraints. __Results__ The method was evaluated on 49 carotid arteries from 30 subjects. The proposed method shows good accuracy with a Dice wall overlap of 74:1%+-4:3%, and significantly outperforms a published method based on an OSG using only surface information, the obtained segmentations using voxel-wise classification alone, and another published artery wall segmentation method based on a deformable surface model. Intra-class correlations (ICC) with manually measured lumen and wall volumes were similar to those obtained between observers. Finally, we show a good reproducibility of the method with ICC = 0:86 between the volumes measured in scans repeated within a short time interval. __Conclusions__ In this work a new segmentation method that uses both an OSG and regional probabilities is presented. The method shows good segmentations of the carotid artery in MRI and outperformed another segmentation method that uses OSG and edge information and the voxel-wise segmentation using the probability maps

    Methods for automated analysis of macular OCT data

    Get PDF
    Optical coherence tomography (OCT) is fast becoming one of the most important modalities for imaging the eye. It provides high resolution, cross-sectional images of the retina in three dimensions, distinctly showing its many layers. These layers are critical for normal eye function, and vision loss may occur when they are altered by disease. Specifically, the thickness of individual layers can change over time, thereby making the ability to accurately measure these thicknesses an important part of learning about how different diseases affect the eye. Since manual segmentation of the layers in OCT data is time consuming and tedious, automated methods are necessary to extract layer thicknesses. While a standard set of tools exist on the scanners to automatically segment the retina, the output is often limited, providing measurements restricted to only a few layers. Analysis of longitudinal data is also limited, with scans from the same subject often processed independently and registered using only a single landmark at the fovea. Quantification of other changes in the retina, including the accumulation of fluid, are also generally unavailable using the built-in software. In this thesis, we present four contributions for automatically processing OCT data, specifically for data acquired from the macular region of the retina. First, we present a layer segmentation algorithm to robustly segment the eight visible layers of the retina. Our approach combines the use of a random forest (RF) classifier, which produces boundary probabilities, with a boundary refinement algorithm to find surfaces maximizing the RF probabilities. Second, we present a pair of methods for processing longitudinal data from individual subjects: one combining registration and motion correction, and one for simultaneously segmenting the layers across all scans. Third, we develop a method for segmentation of microcystic macular edema, which appear as small, fluid-filled, cystoid spaces within the retina. Our approach again uses an RF classifier to produce a robust segmentation. Finally, we present the development of macular flatspace (MFS), a computational domain used to put data from different subjects in a common coordinate system where each layer appears flat, thereby simplifying any automated processing. We present two applications of MFS: inhomogeneity correction to normalize the intensities within each layer, and layer segmentation by adapting and simplifying a graph formulation used previously
    corecore