893 research outputs found

    Implementation of Particle Swarm Optimization on Sentiment Analysis of Cyberbullying using Random Forest

    Get PDF
    Social media has exerted a significant influence on the lives of the majority of individuals in the contemporary era. It not only enables communication among people within specific environments but also facilitates user connectivity in the virtual realm. Instagram is a social media platform that plays a pivotal role in the sharing of information and fostering communication among its users through the medium of photos and videos, which can be commented on by other users. The utilization of Instagram is consistently growing each year, thereby potentially yielding both positive and negative consequences. One prevalent negative consequence that frequently arises is cyberbullying. Conducting sentiment analysis on cyberbullying data can provide insights into the effectiveness of the employed methodology. This research was conducted as an experimental research, aiming to compare the performance of Random Forest and Random Forest after applying the Particle Swarm Optimization feature selection technique on three distinct data split compositions, namely 70:30, 80:20, and 90:10. The evaluation results indicate that the highest accuracy scores were achieved in the 90:10 data split configuration. Specifically, the Random Forest model yielded an accuracy of 87.50%, while the Random Forest model, after undergoing feature selection using the Particle Swarm Optimization algorithm, achieved an accuracy of 92.19%. Therefore, the implementation of Particle Swarm Optimization as a feature selection technique demonstrates the potential to enhance the accuracy of the Random Forest method

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    PI-tuned UPFC damping controllers design for multi-machine power system

    Get PDF
    This paper presents an adaptive multi-objective algorithm based Unified Power Flow Controller (UPFC) tuned for damping oscillations in two-area multi-machine system formulated as multi- objective optimization problem. The algorithms such as, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II) are proposed for tuning the damping controller with speed deviation and control input as conflicting objectives. The proposed algorithm is implemented in the two area multi-machine system using MATLAB Simulink model, and the simulation results were obtained with respect to the characteristics of damping oscillations and the dynamic stability of power systems. The performance measures such as Integral Time Squared Error (ITSE) and Integral Squared Error (ISE) are considered as the objective functions. The results of the two proposed algorithm has been compared and the outcome shows that the MNSGA-II algorithm performs better compared to the NSGA-II algorithm

    A Cluster-Based Opposition Differential Evolution Algorithm Boosted by a Local Search for ECG Signal Classification

    Full text link
    Electrocardiogram (ECG) signals, which capture the heart's electrical activity, are used to diagnose and monitor cardiac problems. The accurate classification of ECG signals, particularly for distinguishing among various types of arrhythmias and myocardial infarctions, is crucial for the early detection and treatment of heart-related diseases. This paper proposes a novel approach based on an improved differential evolution (DE) algorithm for ECG signal classification for enhancing the performance. In the initial stages of our approach, the preprocessing step is followed by the extraction of several significant features from the ECG signals. These extracted features are then provided as inputs to an enhanced multi-layer perceptron (MLP). While MLPs are still widely used for ECG signal classification, using gradient-based training methods, the most widely used algorithm for the training process, has significant disadvantages, such as the possibility of being stuck in local optimums. This paper employs an enhanced differential evolution (DE) algorithm for the training process as one of the most effective population-based algorithms. To this end, we improved DE based on a clustering-based strategy, opposition-based learning, and a local search. Clustering-based strategies can act as crossover operators, while the goal of the opposition operator is to improve the exploration of the DE algorithm. The weights and biases found by the improved DE algorithm are then fed into six gradient-based local search algorithms. In other words, the weights found by the DE are employed as an initialization point. Therefore, we introduced six different algorithms for the training process (in terms of different local search algorithms). In an extensive set of experiments, we showed that our proposed training algorithm could provide better results than the conventional training algorithms.Comment: 44 pages, 9 figure

    A Robust Cardiovascular Disease Predictor Based on Genetic Feature Selection and Ensemble Learning Classification

    Get PDF
    Timely detection of heart diseases is crucial for treating cardiac patients prior to the occurrence of any fatality. Automated early detection of these diseases is a necessity in areas where specialized doctors are limited. Deep learning methods provided with a decent set of heart disease data can be used to achieve this. This article proposes a robust heart disease prediction strategy using genetic algorithms and ensemble deep learning techniques. The efficiency of genetic algorithms is utilized to select more significant features from a high-dimensional dataset, combined with deep learning techniques such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron (MLP), and Radial Basis Function (RBF), to achieve the goal. The boosting algorithm, Logit Boost, is made use of as a meta-learning classifier for predicting heart disease. The Cleveland heart disease dataset found in the UCI repository yields an overall accuracy of 99.66%, which is higher than many of the most efficient approaches now in existence

    Software Reliability Prediction using Correlation Constrained Multi-Objective Evolutionary Optimization Algorithm

    Get PDF
    Software reliability frameworks are extremely effective for estimating the probability of software failure over time. Numerous approaches for predicting software dependability were presented, but neither of those has shown to be effective. Predicting the number of software faults throughout the research and testing phases is a serious problem. As there are several software metrics such as object-oriented design metrics, public and private attributes, methods, previous bug metrics, and software change metrics. Many researchers have identified and performed predictions of software reliability on these metrics. But none of them contributed to identifying relations among these metrics and exploring the most optimal metrics. Therefore, this paper proposed a correlation- constrained multi-objective evolutionary optimization algorithm (CCMOEO) for software reliability prediction. CCMOEO is an effective optimization approach for estimating the variables of popular growth models which consists of reliability. To obtain the highest classification effectiveness, the suggested CCMOEO approach overcomes modeling uncertainties by integrating various metrics with multiple objective functions. The hypothesized models were formulated using evaluation results on five distinct datasets in this research. The prediction was evaluated on seven different machine learning algorithms i.e., linear support vector machine (LSVM), radial support vector machine (RSVM), decision tree, random forest, gradient boosting, k-nearest neighbor, and linear regression. The result analysis shows that random forest achieved better performance

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks

    Get PDF
    This paper introduces a novel technique for optimal distribution system (DS) planning with distributed generation (DG) systems. It is being done to see how active and reactive power injections affect the system’s voltage profile and energy losses. DG penetration in the power systems is one approach that has several advantages such as peak savings, loss lessening, voltage profile amelioration. It also intends to increase system reliability, stability, and security. The main goal of optimal distributed generation (ODG) is a guarantee to achieve the benefits mentioned previously to increase the overall system efficiency. For extremely vast and complicated systems, analytical approaches are not suitable and insufficient. Therefore, several meta-heuristic techniques are favored to obtain better performance from were convergence and accuracy for large systems. In this paper, an Improved Wild Horse Optimization algorithm (IWHO) is proposed as a novel metaheuristic method for solving optimization issues in electrical power systems. IWHO is devised with inspirations from the social life behavior of wild horses. The suggested method is based on the horse’s decency. To assess the efficacy of the IWHO, it is implemented on the 23 benchmark functions Reliability amelioration is the most things superb as a result of DGs incorporation. Thus, in this research, a customer-side reliability appraisal in the DS that having a DG unit was carried out by a Monte Carlo Simulation (MCS) approach to construct an artificial history for each ingredient across simulation duration. For load flow calculations, the backward Forward Sweep (BFS) technique has been employed as a simulation tool to assess the network performance considering the power handling restrictions. The proposed IWHO method has been measured on IEEE 33 69 and 119 buses to ascertain the network performing in the presence of the optimal DG and the potential benefits of the suggested technique for enhancing the tools used by operators and planners to maintain the system reliability and efficiency. The results proved that IWHO is an optimization method with lofty performance regarding the exploration–exploitation balance and convergence speed, as it successfully handles complicated problems

    A Teaching-Learning-Based Optimization Algorithm for the Weighted Set-Covering Problem

    Get PDF
    The need to make good use of resources has allowed metaheuristics to become a tool to achieve this goal. There are a number of complex problems to solve, among which is the Set-Covering Problem, which is a representation of a type of combinatorial optimization problem, which has been applied to several real industrial problems. We use a binary version of the optimization algorithm based on teaching and learning to solve the problem, incorporating various binarization schemes, in order to solve the binary problem. In this paper, several binarization techniques are implemented in the teaching/learning based optimization algorithm, which presents only the minimum parameters to be configured such as the population and number of iterations to be evaluated. The performance of metaheuristic was evaluated through 65 benchmark instances. The results obtained are promising compared to those found in the literature

    Application of Power Electronics Converters in Smart Grids and Renewable Energy Systems

    Get PDF
    This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller
    corecore