41 research outputs found

    Automatic translation of non-repetitive OpenMP to MPI

    Get PDF
    Cluster platforms with distributed-memory architectures are becoming increasingly available low-cost solutions for high performance computing. Delivering a productive programming environment that hides the complexity of clusters and allows writing efficient programs is urgently needed. Despite multiple efforts to provide shared memory abstraction, message-passing (MPI) is still the state-of-the-art programming model for distributed-memory architectures. ^ Writing efficient MPI programs is challenging. In contrast, OpenMP is a shared-memory programming model that is known for its programming productivity. Researchers introduced automatic source-to-source translation schemes from OpenMP to MPI so that programmers can use OpenMP while targeting clusters. Those schemes limited their focus on OpenMP programs with repetitive communication patterns (where the analysis of communication can be simplified). This dissertation reduces this limitation and presents a novel OpenMP-to-MPI translation scheme that covers OpenMP programs with both repetitive and non-repetitive communication patterns. We target laboratory-size clusters of ten to hundred nodes (commonly found in research laboratories and small enterprises). ^ With our translation scheme, six non-repetitive and four repetitive OpenMP benchmarks have been efficiently scaled to a cluster of 64 cores. By contrast, the state-of-the-art translator scaled only the four repetitive benchmarks. In addition, our translation scheme was shown to outperform or perform as well as the state-of-the-art translator. We also compare the translation scheme with available hand-coded MPI and Unified Parallel C (UPC) programs

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-level compiler analysis for OpenMP

    Get PDF
    Nowadays, applications from dissimilar domains, such as high-performance computing and high-integrity systems, require levels of performance that can only be achieved by means of sophisticated heterogeneous architectures. However, the complex nature of such architectures hinders the production of efficient code at acceptable levels of time and cost. Moreover, the need for exploiting parallelism adds complications of its own (e.g., deadlocks, race conditions,...). In this context, compiler analysis is fundamental for optimizing parallel programs. There is however a trade-off between complexity and profit: low complexity analyses (e.g., reaching definitions) provide information that may be insufficient for many relevant transformations, and complex analyses based on mathematical representations (e.g., polyhedral model) give accurate results at a high computational cost. A range of parallel programming models providing different levels of programmability, performance and portability enable the exploitation of current architectures. However, OpenMP has proved many advantages over its competitors: 1) it delivers levels of performance comparable to highly tunable models such as CUDA and MPI, and better robustness than low level libraries such as Pthreads; 2) the extensions included in the latest specification meet the characteristics of current heterogeneous architectures (i.e., the coupling of a host processor to one or more accelerators, and the capability of expressing fine-grained, both structured and unstructured, and highly-dynamic task parallelism); 3) OpenMP is widely implemented by several chip (e.g., Kalray MPPA, Intel) and compiler (e.g., GNU, Intel) vendors; and 4) although currently the model lacks resiliency and reliability mechanisms, many works, including this thesis, pursue their introduction in the specification. This thesis addresses the study of compiler analysis techniques for OpenMP with two main purposes: 1) enhance the programmability and reliability of OpenMP, and 2) prove OpenMP as a suitable model to exploit parallelism in safety-critical domains. Particularly, the thesis focuses on the tasking model because it offers the flexibility to tackle the parallelization of algorithms with load imbalance, recursiveness and uncountable loop based kernels. Additionally, current works have proved the time-predictability of this model, shortening the distance towards its introduction in safety-critical domains. To enable the analysis of applications using the OpenMP tasking model, the first contribution of this thesis is the extension of a set of classic compiler techniques with support for OpenMP. As a basis for including reliability mechanisms, the second contribution consists of the development of a series of algorithms to statically detect situations involving OpenMP tasks, which may lead to a loss of performance, non-deterministic results or run-time failures. A well-known problem of parallel processing related to compilers is the static scheduling of a program represented by a directed graph. Although the literature is extensive in static scheduling techniques, the work related to the generation of the task graph at compile-time is very scant. Compilers are limited by the knowledge they can extract, which depends on the application and the programming model. The third contribution of this thesis is the generation of a predicated task dependency graph for OpenMP that can be interpreted by the runtime in such a way that the cost of solving dependences is reduced to the minimum. With the previous contributions as a basis for determining the functional safety of OpenMP, the final contribution of this thesis is the adaptation of OpenMP to the safety-critical domain considering two directions: 1) indicating how OpenMP can be safely used in such a domain, and 2) integrating OpenMP into Ada, a language widely used in the safety-critical domain.Actualment, aplicacions de dominis diversos com la computació d'altes prestacions i els sistemes d'alta integritat, requereixen nivells de rendiment assolibles només mitjançant arquitectures heterogènies sofisticades. No obstant, la natura complexa d'aquestes dificulta la producció de codi eficient en un temps i cost acceptables. A més, la necessitat d’explotar paral·lelisme introdueix complicacions en sí mateixa (p. ex. bloqueig mutu, condicions de carrera,...). En aquest context, l'anàlisi de compiladors és fonamental per optimitzar programes paral·lels. Existeix però un equilibri entre complexitat i beneficis: la informació obtinguda amb anàlisis simples (p. ex. definicions abastables) pot ser insuficient per moltes transformacions rellevants, i anàlisis complexos basats en models matemàtics (p. ex. model polièdric) faciliten resultats acurats a un alt cost computacional. Existeixen molts models de programació paral·lela que proporcionen diferents nivells de programabilitat, rendiment i portabilitat per l'explotació de les arquitectures actuals. En aquest marc, OpenMP ha demostrat molts avantatges respecte dels seus competidors: 1) el seu nivell de rendiment és comparable a models molt ajustables com CUDA i MPI, i proporciona més robustesa que llibreries de baix nivell com Pthreads; 2) les extensions que inclou la darrera especificació satisfan les característiques de les actuals arquitectures heterogènies (és a dir, l’acoblament d’un processador principal i un o més acceleradors, i la capacitat d'expressar paral·lelisme de tasques de gra fi, ja sigui estructurat o sense estructura; 3) OpenMP és àmpliament implementat per venedors de xips (p. ex. Kalray MPPA, Intel) i compiladors (p. ex. GNU, Intel); i 4) tot i que el model actual manca de mecanismes de resiliència i fiabilitat, molts treballs, incloent aquesta tesi, busquen la seva introducció a l'especificació. Aquesta tesi adreça l'estudi de tècniques d’anàlisi de compiladors amb dos objectius: 1) millorar la programabilitat i la fiabilitat de OpenMP, i 2) provar que OpenMP és un model adequat per explotar paral·lelisme en sistemes crítics. En particular, la tesi es centra en el model de tasques per què aquest ofereix la flexibilitat per abordar aplicacions amb problemes de balanceig de càrrega, recursivitat i bucles incomptables. A més, treballs recents han provat la predictibilitat en qüestió de temps del model, escurçant la distància cap a la seva introducció en sistemes crítics. Per a poder analitzar aplicacions que utilitzen el model de tasques d’OpenMP, la primera contribució d’aquesta tesi consisteix en l’extensió d'un conjunt de tècniques clàssiques de compilació per suportar OpenMP. Com a base per incloure mecanismes de fiabilitat, la segona contribució consisteix en el desenvolupament duna sèrie d'algorismes per detectar de forma estàtica situacions que involucren tasques d’OpenMP, i que poden conduir a una pèrdua de rendiment, resultats no deterministes, o fallades en temps d’execució. Un problema ben conegut del processament paral·lel relacionat amb els compiladors és la planificació estàtica d’un programa representat mitjançant un graf dirigit. Tot i que la literatura sobre planificació estàtica és extensa, aquella relacionada amb la generació del graf en temps de compilació és molt escassa. Els compiladors estan limitats pel coneixement que poden extreure, que depèn de l’aplicació i del model de programació. La tercera contribució de la tesi és la generació d’un graf de dependències enriquit que pot ser interpretat pel sistema en temps d’execució de manera que el cost de resoldre les dependències sigui mínim. Amb les anteriors contribucions com a base per a determinar la seguretat funcional de OpenMP, la darrera contribució de la tesi consisteix en adaptar OpenMP a sistemes crítics, explorant dues direccions: 1) indicar com OpenMP es pot utilitzar de forma segura en un domini com, i 2) integrar OpenMP en Ada, un llenguatge molt utilitzat en el domini de seguretat.Postprint (published version

    RE-LANG---A Parallel-by-default Programming Language

    Get PDF
    In recent years, programming language features such as lightweight threads have gained popularity in the software development workflow. Our research takes a critical look at these recent trends, rethinking them through an academic lens. We propose a construct called "smart assignment," supported by rewriting semantics, which enables a novel parallel-by-default programming paradigm. We present a new programming language—RE-LANG—that implements this feature. Specifically, we demonstrate how the design philosophy of RE-LANG makes imperative, parallel programming more developer-friendly. We discuss the implementation of the language and showcase performance benchmarks, as well as overhead analysis, to demonstrate its efficiency.Doctor of Philosoph

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Self-adaptivity of applications on network on chip multiprocessors: the case of fault-tolerant Kahn process networks

    Get PDF
    Technology scaling accompanied with higher operating frequencies and the ability to integrate more functionality in the same chip has been the driving force behind delivering higher performance computing systems at lower costs. Embedded computing systems, which have been riding the same wave of success, have evolved into complex architectures encompassing a high number of cores interconnected by an on-chip network (usually identified as Multiprocessor System-on-Chip). However these trends are hindered by issues that arise as technology scaling continues towards deep submicron scales. Firstly, growing complexity of these systems and the variability introduced by process technologies make it ever harder to perform a thorough optimization of the system at design time. Secondly, designers are faced with a reliability wall that emerges as age-related degradation reduces the lifetime of transistors, and as the probability of defects escaping post-manufacturing testing is increased. In this thesis, we take on these challenges within the context of streaming applications running in network-on-chip based parallel (not necessarily homogeneous) systems-on-chip that adopt the no-remote memory access model. In particular, this thesis tackles two main problems: (1) fault-aware online task remapping, (2) application-level self-adaptation for quality management. For the former, by viewing fault tolerance as a self-adaptation aspect, we adopt a cross-layer approach that aims at graceful performance degradation by addressing permanent faults in processing elements mostly at system-level, in particular by exploiting redundancy available in multi-core platforms. We propose an optimal solution based on an integer linear programming formulation (suitable for design time adoption) as well as heuristic-based solutions to be used at run-time. We assess the impact of our approach on the lifetime reliability. We propose two recovery schemes based on a checkpoint-and-rollback and a rollforward technique. For the latter, we propose two variants of a monitor-controller- adapter loop that adapts application-level parameters to meet performance goals. We demonstrate not only that fault tolerance and self-adaptivity can be achieved in embedded platforms, but also that it can be done without incurring large overheads. In addressing these problems, we present techniques which have been realized (depending on their characteristics) in the form of a design tool, a run-time library or a hardware core to be added to the basic architecture

    Applications Development for the Computational Grid

    Get PDF
    corecore