3,129 research outputs found

    Robustness and modularity properties of a non-covalent DNA catalytic reaction

    Get PDF
    The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks

    The Impact of Nucleoside Sugar Modification on Biochemical DNA Transactions

    Get PDF
    Discrimination by DNA polymerases controls the fidelity of DNA replication, and reduced fidelity results in mutations essential in the etiology of cancer. Polymerase discrimination operates at both dNTP insertion and subsequent elongation steps, and involves several energetic and structural factors that are as yet incompletely understood. While base pairing interactions have been studied extensively, substantially less is known about the role of sugar structure and conformation for polymerase incorporation and extension. In these studies we examined, systematically, the role of sugar structure and conformation on polymerase selection of the dNTP for insertion and polymerase elongation. To accomplish these goals, we have developed methods for the synthesis of oligonucleotides with nucleoside analogues with biased sugar conformations at the 3\u27-end (growing end) as well as at internucleotide positions. Through a series of thermodynamic, structural and functional studies, we reveal how sugar structure and conformational properties impact polymerase incorporation and extension behavior. The analogues proposed for this study allow an examination of structural and conformational properties, but also, this group of analogues comprises an important class of cytotoxic, antitumor and antiviral agents. The results of these studies will likely provide a clearer understanding of the role of sugar conformation in the fidelity of DNA synthesis and replication as well as reveal important insights into the activity and toxicity of several nucleoside analogues and allow prediction of the biological properties of future analogues

    Aptamer-peptide conjugates as a new strategy to modulate human α-thrombin binding affinity

    Get PDF
    Aptamers are single-stranded RNA or DNA molecules that specifically recognize their targets and have proven valuable for functionalizing sensitive biosensors. α-thrombin is a trypsin-like serine proteinase which plays a crucial role in haemostasis and thrombosis. An abnormal activity or overexpression of this protein is associated with a variety of diseases. A great deal of attention was devoted to the construction of high-throughput biosensors for accurately detect thrombin for the early diagnosis and treatment of related diseases. Herein, we propose a new approach to modulate the interaction between α-thrombin and the aptamer TBA. To this end, TBA was chemically conjugated to two peptide sequences (TBA-GFIE-Ac and TBA-GEIF-Ac) corresponding to a short fragment of the acidic region of the human factor V, which is known to interact directly with exosite I. Surface Plasmon Resonance (SPR) results showed enhanced analytical performances of thrombin with TBA-GEIF-Ac than with TBA wild-type, reaching a limit of detection as low as 44.9 pM. Electrophoresis mobility shift assay (EMSA) corroborated the SPR results. Molecular dynamics (MD) simulations support experimental evidences and provided further insight into thrombin/TBA-peptide interaction. Our findings demonstrate that the combination of TBA with key interacting peptides offers good opportunities to produce sensitive devices for thrombin detection and potential candidates to block thrombin activity

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    High-Throughput, Whole-Genome Sequencing

    Get PDF
    Since the completion of the Human Genome Project, research focusing on the consequence of known human genetic code has advanced by leaps and bounds. The development of personalized medicine, a field focused on enumerating the effects of individual genetic variations, termed SNPs, has become a reality for those researching the molecular basis of disease. With clinical correlates between genotype and prognosis becoming ever more common, the utility of personal genetic screening has become impossible to ignore. In this report, we present PennBio: a whole-genome sequencing company utilizing a novel single-molecule, real time sequencing-by-synthesis technology. Using unique zero-mode waveguides, which have revolutionized single-molecule detection, individual enzymes polymerizing novel phospholinked fluorescence labeled nucleotides can be observed as they sequence genomic template DNA. Modern optical techniques record these fragmented sequences, which are then analyzed by highly efficient alignment algorithms. A personal genomic code will ultimately allow consumers to be aware of their genetic predispositions as the medical community continues to discover them

    Distinct energetics and closing pathways for DNA polymerase β with 8-oxoG template and different incoming nucleotides

    Get PDF
    BACKGROUND: 8-Oxoguanine (8-oxoG) is a common oxidative lesion frequently encountered by DNA polymerases such as the repair enzyme DNA polymerase β (pol β). To interpret in atomic and energetic detail how pol β processes 8-oxoG, we apply transition path sampling to delineate closing pathways of pol β 8-oxoG complexes with dCTP and dATP incoming nucleotides and compare the results to those of the nonlesioned G:dCTP and G:dATPanalogues. RESULTS: Our analyses show that the closing pathways of the 8-oxoG complexes are different from one another and from the nonlesioned analogues in terms of the individual transition states along each pathway, associated energies, and the stability of each pathway's closed state relative to the corresponding open state. In particular, the closed-to-open state stability difference in each system establishes a hierarchy of stability (from high to low) as G:C > 8-oxoG:C > 8-oxoG:A > G:A, corresponding to -3, -2, 2, 9 k(B)T, respectively. This hierarchy of closed state stability parallels the experimentally observed processing efficiencies for the four pairs. Network models based on the calculated rate constants in each pathway indicate that the closed species are more populated than the open species for 8-oxoG:dCTP, whereas the opposite is true for 8-oxoG:dATP. CONCLUSION: These results suggest that the lower insertion efficiency (larger K(m)) for dATP compared to dCTP opposite 8-oxoG is caused by a less stable closed-form of pol β, destabilized by unfavorable interactions between Tyr271 and the mispair. This stability of the closed vs. open form can also explain the higher insertion efficiency for 8-oxoG:dATP compared to the nonlesioned G:dATP pair, which also has a higher overall conformational barrier. Our study offers atomic details of the complexes at different states, in addition to helping interpret the different insertion efficiencies of dATP and dCTP opposite 8-oxoG and G

    Application of chemically modified oligonucleotides in nanopore sensing and DNA nano – biotechnology

    Get PDF
    This thesis describes how targeted chemical modification can enhance the properties of nucleic acids for use in (i) nanopore analytics and (ii) nanobiotechnology. In nanopore analytics, individual molecules are detected as they pass a nanoscale pore to give rise to detectable blockades in ionic current. Despite progress in the sensing of a multitude of molecular species, the analytical resolution in the sensing of DNA is poor as individual bases in passing strands cannot be resolved due to the high speed of translocation. Here a new approach is presented which slows down single stranded DNA and enables the detection of multiple separate bases. Chemical tags are attached to bases, which cause a steric blockade each time a modified base passes a narrow pore. The resulting characteristic current signatures are specific for the chemical composition and the size of the tags. The unique electrical signatures can be exploited to encode sequence information as demonstrated for the discrimination between drug resistance-conferring point mutations. In addition, the generation of nucleotides with tailored properties may help develop a fast nanopore approach to size highly repetitive DNA sequences for forensic applications. In DNA nanobiotechnology, oligonucleotides are self-assembled via hybridization to generate higher-order structures of defined geometry. Here, the functional range of DNA nanostructures is expanded by chemically modifying the constituent nucleic acids. Firstly, tetrahedron-shaped nanostructures are demonstrated to act as a scaffold to assemble a multitude of different chemical groups at tunable stoichiometry and at geometrically defined sites. The new molecular entities exhibit functional properties beneficial in biosensing and diagnostics. In addition, an approach is presented to achieve self-assembly between DNA-strands via covalently attached tags that form reversible yet tight metal chelate complexes. This chemical strategy to form supramolecular structures can potentially be extended to protein or peptide networks of interest in basic science and technology
    corecore