6,737 research outputs found

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Industrial Robotics for Advanced Machining

    Get PDF
    This work presents a literature review of the current state of robotic machining with industrial machining robots, primarily those with 6-axis end effectors and serial link (anthropomorphic) construction. Various disadvantages of robotic machining in industry are presented, as well as the methods applied to mitigate them and discussions of their effects. From this review, the methods of dynamic modelling, stability prediction and configuration control are selected for application to the task of optimisation of a robotic machining cell for drilling operations. Matrix Structural Analysis (MSA) and methods developed by Klimchik et al. are used for compliance modelling, stability prediction methods developed by Altintas et al. and machining stability lobe prediction are then applied to a robotic drilling process, as explored by Mousavi et al. This optimisation method is applied using the measured and estimated properties of an ABB IRB 6640 robot and results are presented in comparison with previous experimentation with the physical robot, and analytical stability predictions from the same cutting parameters with Cutpro software. Results are discussed in the concluding chapters, as well as discontinued parts of the project and suggestions for future work

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    Assessing the Benefits, Challenges and Scientific Value of Community Science Programs: A Case Study Using Bumble Bee Watch

    Get PDF
    We are experiencing a biodiversity crisis but resources to help species are limited. Scientists are turning to community science to complement traditional scientific methods. Bumble bees (Bombus spp.) are important pollinators in temperate regions, but many are in decline, and more information is needed to conserve them. The Bumble Bee Watch (BBW) program collects this through photos submitted by volunteers and identified by experts. Yet many community science programs struggle. Chapter 2 reviews common successes and challenges, offering best practices for developing and running programs. To determine whether BBW is filling knowledge gaps, Chapter 3 compares its data to the Bumble Bees of North America database (BBNA) over all years and 2010-2020. BBW recorded 41 species (BBNA had 48) from all parts of the continental US and Canada, confirmed persistence, and provided novel locations for species outside of and within the known extent of occurrence. BBW showed its greatest impact from 2010-2020 by contributing 25% of all records, 28% of all unique locations, and 32% new plant forage genera. BBW does not replace traditional surveys, but does complement them. Chapter 4 shows that B. pensylvanicus is critically endangered in Canada according to IUCN Red List criteria. BBW provided 20% of all B. pensylvanicus records and 36% of its sites over the 2007-2016 period assessed, and thus provided important information on its current abundance and distribution. No experience is required to participate in BBW, but having participants able to accurately identify species is beneficial. Chapter 5 explores the percent agreement and veracity of participant species identifications compared to experts, with the average being 53% and 56%, respectively. With better educational resources, participants may be better trained to identify species more accurately. Understanding the motivations and insights of community science participants is important. Chapter 6 discusses the results of a BBW user and expert survey: participants want to contribute to science and save the bees, and report an increase in knowledge and skills after participating. Although areas for improvement are noted, BBW is an important tool for Bombus researchers, and demonstrates the value that community science has for species conservation
    corecore