34 research outputs found

    Multi-label multi-instance transfer learning for simultaneous reconstruction and cross-talk modeling of multiple human signaling pathways

    Get PDF
    Text file contains the predicted cross-talk signaling components between human signaling pathways (homolog instance). (ZIP 36 KB

    Machine-learning-based identification of factors that influence molecular virus-host interactions

    Get PDF
    Viruses are the cause of many infectious diseases such as the pandemic viruses: acquired immune deficiency syndrome (AIDS) and coronavirus disease 2019 (COVID-19). During the infection cycle, viruses invade host cells and trigger a series of virus-host interactions with different directionality. Some of these interactions disrupt host immune responses or promote the expression of viral proteins and exploitation of the host system thus are considered ‘pro-viral’. Some interactions display ‘pro-host’ traits, principally the immune response, to control or inhibit viral replication. Concomitant pro-viral and pro-host molecular interactions on the same host molecule suggests more complex virus-host conflicts and genetic signatures that are crucial to host immunity. In this work, machinelearning-based prediction of virus-host interaction directionality was examined by using data from Human immunodeficiency virus type 1 (HIV-1) infection. Host immune responses to viral infections are mediated by interferons(IFNs) in the initial stage of the immune response to infection. IFNs induce the expression of many IFN-stimulated genes (ISGs), which make the host cell refractory to further infection. We propose that there are many features associated with the up-regulation of human genes in the context of IFN-α stimulation. They make ISGs predictable using machine-learning models. In order to overcome the interference of host immune responses for successful replication, viruses adopt multiple strategies to avoid being detected by cellular sensors in order to hijack the machinery of host transcription or translation. Here, the strategy of mimicry of host-like short linear motifs (SLiMs) by the virus was investigated by using the example of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The integration of in silico experiments and analyses in this thesis demonstrates an interactive and intimate relationship between viruses and their hosts. Findings here contribute to the identification of host dependency and antiviral factors. They are of great importance not only to the ongoing COVID-19 pandemic but also to the understanding of future disease outbreaks

    Prediction of host-virus interaction networks

    Get PDF
    As with other viral pathogens, HIV-1 and dengue virus (DENV) are dependent on their hosts for the bulk of the functions necessary for viral survival and replication. Thus, successful infection depends on the pathogen's ability to manipulate the biological pathways and processes of the organism it infects, while avoiding elimination by the immune system. Protein-protein interactions are one avenue through which viruses can connect with and exploit these host cellular pathways and processes. We developed a computational approach to predict interactions between HIV and human proteins based on structural similarity of 9 HIV-1 proteins to human proteins having known interactions. Using functional data from RNAi studies as a filter, we generated over 2,000 interaction predictions between HIV proteins and 406 unique human proteins. Additional filtering based on Gene Ontology cellular component annotation reduced the number of predictions to 502 interactions involving 137 human proteins. We find numerous known interactions as well as novel interactions showing significant functional relevance based on supporting Gene Ontology and literature evidence. We then applied this approach to predict interactions between (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half. Our results suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Viruses manipulate cellular processes to their advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into viral life cycles and potential therapeutic targets.Doctor of Philosoph

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here
    corecore