38,824 research outputs found

    Forensic Face Recognition: A Survey

    Get PDF
    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is the forensic experts‟ way of manual facial comparison. Then we review famous works in the domain of forensic face recognition. Some of these papers describe general trends in forensics [1], guidelines for manual forensic facial comparison and training of face examiners who will be required to verify the outcome of automatic forensic face recognition system [2]. Some proposes theoretical framework for application of face recognition technology in forensics [3] and automatic forensic facial comparison [4, 5]. Bayesian framework is discussed in detail and it is elaborated how it can be adapted to forensic face recognition. Several issues related with court admissibility and reliability of system are also discussed. \ud Until now, there is no operational system available which automatically compare image of a suspect with mugshot database and provide result usable in court. The fact that biometric face recognition can in most cases be used for forensic purpose is true but the issues related to integration of technology with legal system of court still remain to be solved. There is a great need for research which is multi-disciplinary in nature and which will integrate the face recognition technology with existing legal systems. In this report we present a review of the existing literature in this domain and discuss various aspects and requirements for forensic face recognition systems particularly focusing on Bayesian framework

    Detecting Low Rapport During Natural Interactions in Small Groups from Non-Verbal Behaviour

    Full text link
    Rapport, the close and harmonious relationship in which interaction partners are "in sync" with each other, was shown to result in smoother social interactions, improved collaboration, and improved interpersonal outcomes. In this work, we are first to investigate automatic prediction of low rapport during natural interactions within small groups. This task is challenging given that rapport only manifests in subtle non-verbal signals that are, in addition, subject to influences of group dynamics as well as inter-personal idiosyncrasies. We record videos of unscripted discussions of three to four people using a multi-view camera system and microphones. We analyse a rich set of non-verbal signals for rapport detection, namely facial expressions, hand motion, gaze, speaker turns, and speech prosody. Using facial features, we can detect low rapport with an average precision of 0.7 (chance level at 0.25), while incorporating prior knowledge of participants' personalities can even achieve early prediction without a drop in performance. We further provide a detailed analysis of different feature sets and the amount of information contained in different temporal segments of the interactions.Comment: 12 pages, 6 figure

    Taking the bite out of automated naming of characters in TV video

    No full text
    We investigate the problem of automatically labelling appearances of characters in TV or film material with their names. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking. In addition, we incorporate complementary cues of face matching and clothing matching to propose common annotations for face tracks, and consider choices of classifier which can potentially correct errors made in the automatic extraction of training data from the weak textual annotation. Results are presented on episodes of the TV series ‘‘Buffy the Vampire Slayer”

    A graphical model based solution to the facial feature point tracking problem

    Get PDF
    In this paper a facial feature point tracker that is motivated by applications such as human-computer interfaces and facial expression analysis systems is proposed. The proposed tracker is based on a graphical model framework. The facial features are tracked through video streams by incorporating statistical relations in time as well as spatial relations between feature points. By exploiting the spatial relationships between feature points, the proposed method provides robustness in real-world conditions such as arbitrary head movements and occlusions. A Gabor feature-based occlusion detector is developed and used to handle occlusions. The performance of the proposed tracker has been evaluated on real video data under various conditions including occluded facial gestures and head movements. It is also compared to two popular methods, one based on Kalman filtering exploiting temporal relations, and the other based on active appearance models (AAM). Improvements provided by the proposed approach are demonstrated through both visual displays and quantitative analysis

    A deep matrix factorization method for learning attribute representations

    Get PDF
    Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015
    • 

    corecore