22,164 research outputs found

    Adaptive Load Balancing: A Study in Multi-Agent Learning

    Full text link
    We study the process of multi-agent reinforcement learning in the context of load balancing in a distributed system, without use of either central coordination or explicit communication. We first define a precise framework in which to study adaptive load balancing, important features of which are its stochastic nature and the purely local information available to individual agents. Given this framework, we show illuminating results on the interplay between basic adaptive behavior parameters and their effect on system efficiency. We then investigate the properties of adaptive load balancing in heterogeneous populations, and address the issue of exploration vs. exploitation in that context. Finally, we show that naive use of communication may not improve, and might even harm system efficiency.Comment: See http://www.jair.org/ for any accompanying file

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    MPI-Vector-IO: Parallel I/O and Partitioning for Geospatial Vector Data

    Get PDF
    In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO 1 , a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms

    Distributed Dispatching in the Parallel Server Model

    Get PDF
    With the rapid increase in the size and volume of cloud services and data centers, architectures with multiple job dispatchers are quickly becoming the norm. Load balancing is a key element of such systems. Nevertheless, current solutions to load balancing in such systems admit a paradoxical behavior in which more accurate information regarding server queue lengths degrades performance due to herding and detrimental incast effects. Indeed, both in theory and in practice, there is a common doubt regarding the value of information in the context of multi-dispatcher load balancing. As a result, both researchers and system designers resort to more straightforward solutions, such as the power-of-two-choices to avoid worst-case scenarios, potentially sacrificing overall resource utilization and system performance. A principal focus of our investigation concerns the value of information about queue lengths in the multi-dispatcher setting. We argue that, at its core, load balancing with multiple dispatchers is a distributed computing task. In that light, we propose a new job dispatching approach, called Tidal Water Filling, which addresses the distributed nature of the system. Specifically, by incorporating the existence of other dispatchers into the decision-making process, our protocols outperform previous solutions in many scenarios. In particular, when the dispatchers have complete and accurate information regarding the server queue lengths, our policies significantly outperform all existing solutions
    corecore