315 research outputs found

    Geospatial Data Management Research: Progress and Future Directions

    Get PDF
    Without geospatial data management, today®s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis

    Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach

    Get PDF
    Les situations spatio-temporelles dynamiques sont des situations qui Ă©voluent dans l’espace et dans le temps. L’ĂȘtre humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des dĂ©cisions. Ces configurations de situations peuvent aussi ĂȘtre appelĂ©es « situations d’intĂ©rĂȘt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systĂšmes d’acquisition de donnĂ©es souvent prĂ©sents dans diverses industries grĂące aux rĂ©cents dĂ©veloppements technologiques et qui gĂ©nĂšrent des bases de donnĂ©es de plus en plus volumineuses. On relĂšve un problĂšme important dans la littĂ©rature liĂ© au fait que les formalismes de reprĂ©sentation utilisĂ©s sont souvent incapables de reprĂ©senter des phĂ©nomĂšnes spatiotemporels dynamiques et complexes qui reflĂštent la rĂ©alitĂ©. De plus, ils ne prennent pas en considĂ©ration l’apprĂ©hension cognitive (modĂšle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en Ɠuvre de tels modĂšles par des agents logiciels. Dans cette thĂšse, nous proposons un nouveau modĂšle de reprĂ©sentation des situations d’intĂ©rĂȘt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modĂšle de reprĂ©sentation. Le modĂšle se base sur les notions d’évĂ©nement et d’état pour reprĂ©senter des phĂ©nomĂšnes spatiotemporels dynamiques. Il intĂšgre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons dĂ©tectĂ©s. Nous proposons aussi un outil de gĂ©nĂ©ration automatisĂ©e des relations qualitatives de proximitĂ© spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intĂ©gration de notre modĂšle dans des applications industrielles rĂ©elles. Ainsi, les contributions principales de notre travail sont : Un formalisme de reprĂ©sentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la dĂ©finition des patrons spatio-temporels basĂ©e sur l’intĂ©gration de l’information contextuelle. ; Un outil de gĂ©nĂ©ration automatique des relations spatiales qualitatives de proximitĂ© basĂ© sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de dĂ©tection des patrons spatiotemporels basĂ©e sur l’extension d’un moteur de traitement des Ă©vĂ©nements complexes (Complex Event Processing).Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine

    Automatic Geospatial Data Conflation Using Semantic Web Technologies

    Get PDF
    Duplicate geospatial data collections and maintenance are an extensive problem across Australia government organisations. This research examines how Semantic Web technologies can be used to automate the geospatial data conflation process. The research presents a new approach where generation of OWL ontologies based on output data models and presenting geospatial data as RDF triples serve as the basis for the solution and SWRL rules serve as the core to automate the geospatial data conflation processes

    Visualization of Uncertain Boundaries of Undersea Features

    Get PDF
    There have been several studies that detect, measure, analyze, and visualize the undersea features by using technologies in multiple disciplines including geography and oceanography. However, definitions of the undersea features often vary among the existing leading literature. Due to this reason the geographical boundary for a certain undersea feature is sometimes not identical among the definitions. In this study, we explore semantic uncertainty in the definitions of some undersea features and apply approaches from fuzzy-set theory and geographic information science on empirical bathymetric data to visualize the uncertain boundaries of the undersea features. Results from this study demonstrate that the representation based on the fuzzy-set approach can be useful for dealing with the semantic uncertainty of the undersea features

    An intelligent classification system for land use and land cover mapping using spaceborne remote sensing and GIS

    Get PDF
    The objectives of this study were to experiment with and extend current methods of Synthetic Aperture Rader (SAR) image classification, and to design and implement a prototype intelligent remote sensing image processing and classification system for land use and land cover mapping in wet season conditions in Bangladesh, which incorporates SAR images and other geodata. To meet these objectives, the problem of classifying the spaceborne SAR images, and integrating Geographic Information System (GIS) data and ground truth data was studied first. In this phase of the study, an extension to traditional techniques was made by applying a Self-Organizing feature Map (SOM) to include GIS data with the remote sensing data during image segmentation. The experimental results were compared with those of traditional statistical classifiers, such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance classifiers. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification (with respect to the period of inundation by regular flooding) was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers. It also achieved higher accuracies for more classes in comparison to the other classifiers. However, it was also observed that different classifiers produced better accuracy for different classes. Therefore, the investigation was extended to consider Multiple Classifier Combination (MCC) techniques, which is a recently emerging research area in pattern recognition. The study has tested some of these techniques to improve the classification accuracy by harnessing the goodness of the constituent classifiers. A Rule-based Contention Resolution method of combination was developed, which exhibited an improvement in the overall accuracy of about 2% in comparison to its best constituent (SOM) classifier. The next phase of the study involved the design of an architecture for an intelligent image processing and classification system (named ISRIPaC) that could integrate the extended methodologies mentioned above. Finally, the architecture was implemented in a prototype and its viability was evaluated using a set of real data. The originality of the ISRIPaC architecture lies in the realisation of the concept of a complete system that can intelligently cover all the steps of image processing classification and utilise standardised metadata in addition to a knowledge base in determining the appropriate methods and course of action for the given task. The implemented prototype of the ISRIPaC architecture is a federated system that integrates the CLIPS expert system shell, the IDRISI Kilimanjaro image processing and GIS software, and the domain experts' knowledge via a control agent written in Visual C++. It starts with data assessment and pre-processing and ends up with image classification and accuracy assessment. The system is designed to run automatically, where the user merely provides the initial information regarding the intended task and the source of available data. The system itself acquires necessary information about the data from metadata files in order to make decisions and perform tasks. The test and evaluation of the prototype demonstrates the viability of the proposed architecture and the possibility of extending the system to perform other image processing tasks and to use different sources of data. The system design presented in this study thus suggests some directions for the development of the next generation of remote sensing image processing and classification systems

    Linking Spatial Video and GIS

    Get PDF
    Spatial Video is any form of geographically referenced videographic data. The forms in which it is acquired, stored and used vary enormously; as does the standard of accuracy in the spatial data and the quality of the video footage. This research deals with a specific form of Spatial Video where these data have been captured from a moving road-network survey vehicle. The spatial data are GPS sentences while the video orientation is approximately orthogonal and coincident with the direction of travel. GIS that use these data are usually bespoke standalone systems or third party extensions to existing platforms. They specialise in using the video as a visual enhancement with limited spatial functionality and interoperability. While enormous amounts of these data exist, they do not have a generalised, cross-platform spatial data structure that is suitable for use within a GIS. The objectives of this research have been to define, develop and implement a novel Spatial Video data structure and demonstrate how this can achieve a spatial approach to the study of video. This data structure is called a Viewpoint and represents the capture location and geographical extent of each video frame. It is generalised to represent any form or format of Spatial Video. It is shown how a Viewpoint improves on existing data structure methodologies and how it can be theoretically defined in 3D space. A 2D implementation is then developed where Viewpoints are constructed from the spatial and camera parameters of each survey in the study area. A number of problems are defined and solutions provided towards the implementation of a post-processing system to calculate, index and store each video frame Viewpoint in a centralised spatial database. From this spatial database a number of geospatial analysis approaches are demonstrated that represent novel ways of using and studying Spatial Video based on the Viewpoint data structure. Also, a unique application is developed where the Viewpoints are used as a spatial control to dynamically access and play video in a location aware system. While video has been to date largely ignored as a GIS spatial data source; it is shown through this novel Viewpoint implementation and the geospatial analysis demonstrations that this need not be the case anymore

    A spatial decision support system for the provision and monitoring of urban greenspace

    Get PDF

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives
    • 

    corecore