2,897 research outputs found

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    Reinforcement learning in ophthalmology: potential applications and challenges to implementation

    Get PDF
    Reinforcement learning is a subtype of machine learning in which a virtual agent, functioning within a set of predefined rules, aims to maximise a specified outcome or reward. This agent can consider multiple variables and many parallel actions at once to optimise its reward, thereby solving complex, sequential problems. Clinical decision making requires physicians to optimise patient outcomes within a set practice framework and, thus, presents considerable opportunity for the implementation of reinforcement learning-driven solutions. We provide an overview of reinforcement learning, and focus on potential applications within ophthalmology. We also explore the challenges associated with development and implementation of reinforcement learning solutions and discuss possible approaches to address them

    Causal Reinforcement Learning: A Survey

    Full text link
    Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty. Despite many remarkable achievements in recent decades, applying reinforcement learning methods in the real world remains challenging. One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world and must therefore learn from scratch through numerous trial-and-error interactions. They may also face challenges in providing explanations for their decisions and generalizing the acquired knowledge. Causality, however, offers a notable advantage as it can formalize knowledge in a systematic manner and leverage invariance for effective knowledge transfer. This has led to the emergence of causal reinforcement learning, a subfield of reinforcement learning that seeks to enhance existing algorithms by incorporating causal relationships into the learning process. In this survey, we comprehensively review the literature on causal reinforcement learning. We first introduce the basic concepts of causality and reinforcement learning, and then explain how causality can address core challenges in non-causal reinforcement learning. We categorize and systematically review existing causal reinforcement learning approaches based on their target problems and methodologies. Finally, we outline open issues and future directions in this emerging field.Comment: 48 pages, 10 figure

    Reinforcement learning in large, structured action spaces: A simulation study of decision support for spinal cord injury rehabilitation

    Full text link
    Reinforcement learning (RL) has helped improve decision-making in several applications. However, applying traditional RL is challenging in some applications, such as rehabilitation of people with a spinal cord injury (SCI). Among other factors, using RL in this domain is difficult because there are many possible treatments (i.e., large action space) and few patients (i.e., limited training data). Treatments for SCIs have natural groupings, so we propose two approaches to grouping treatments so that an RL agent can learn effectively from limited data. One relies on domain knowledge of SCI rehabilitation and the other learns similarities among treatments using an embedding technique. We then use Fitted Q Iteration to train an agent that learns optimal treatments. Through a simulation study designed to reflect the properties of SCI rehabilitation, we find that both methods can help improve the treatment decisions of physiotherapists, but the approach based on domain knowledge offers better performance. Our findings provide a "proof of concept" that RL can be used to help improve the treatment of those with an SCI and indicates that continued efforts to gather data and apply RL to this domain are worthwhile.Comment: 31 pages, 7 figure
    corecore