12,758 research outputs found

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Educating Urban Designers using Augmented Reality and Mobile Learning Technologies / Formación de Urbanistas usando Realidad Aumentada y Tecnologías de Aprendizaje Móvil

    Get PDF
    El presente artículo describe una experiencia educativa usando Realidad Aumentada (RA) en dispositivos móviles para el aprendizaje de conceptos de diseño urbano en estudiantes del Grado de Arquitectura. A tal efecto, se ha diseñado un ejercicio práctico sobre la casuística de un proyecto real, donde los estudiantes deben diseñar una escultura para una plaza pública en función de los parámetros del entorno, debiendo controlar sus parámetros, la forma, escala, localización, materiales, etc. El ejercicio se visualiza y controla mediante plataformas móviles de RA, lo que permite enfatizar un aprendizaje colaborativo mediante el estudio de las propuestas del resto de estudiantes in situ. Para la evaluación del proceso, tanto a nivel de usabilidad como de mejora del proceso educativo, hemos dividido a los estudiantes en dos grupos: uno primero de control, que cursó un sistema tradicional de la asignatura en base a ejercicios de laboratorio, y un grupo experimental, que utilizó el sistema descrito en la ubicación real del proyecto. Al final del curso, y en base a los resultados obtenidos y discutidos en el presente artículo, el grupo experimental obtuvo mejores notas finales, al mismo tiempo que se constata un incremento en el grado de satisfacción y motivación de los estudiantes que han utilizado la propuesta experimental. Este aspecto nos permite reafirmar la utilidad del método en la mejora educativa en el ámbito donde se circunscribe la experiencia.Postprint (author's final draft

    Exploring multimedia and interactive technologies

    Get PDF
    The goal of multimedia design strategies and innovation is to produce meaningful learning environments that relate to and build upon what the learner already knows and what the learner seeks. The multimedia tools used to achieve knowledge transfer should activate recall or prior knowledge and help the learner alter and encode new structures. Traditionally, multimedia has been localized to specific delivery systems and demographics based on the government, industry, or academic concentration. The presenter will explore the introduction of immersive telecommunications technologies, constructivist learning methodologies, and adult learning models to standardize networking and multimedia-based services and products capable of adapting to wired and wireless environments, different devices and conditions on a global scale

    Exploring virtual reality to improve engineering students' spatial abilities pilot study

    Get PDF
    A Virtual Reality pilot study is conducted to improve the spatial ability of engineering students based on solid geometry scenarios. The investigation focused on the Graphic Expression and Computer-Aided Design (GECAD) course, specifically on the study of the spatial abilities developed and the assessment of the academic results in the solid geometry module. A total of 20 participants completed three activities (6 h) in an immersive virtual learning environment (IVLE), using head-mounted display (HMD) glasses. Modeling exercises of three-dimensional geometric shapes are proposed, based on concepts of solid geometry. The scenarios are built step by step and the students can regulate the progress between stages while observing the geometric components at the scale and in the point of view they wish. Beyond academic results, the assessment of student improvement is based on spatial abilities tests: the Differential Aptitude Test: Spatial Relations Subset DAT-SR, Purdue Spatial Visualisation Test: Rotations PSVT:R and Mental Cutting Test MCT. Those tests are applied for evaluating different skills: mental folding, mental rotation and section by a plane. In summary, a methodology is proposed developing activities in an (IVLE) with 3D modelling software applied in solid geometry, in order to promote the development of spatial ability (SA). Spatial abilities are measured before and after the classroom activities and looking for correlations between the spatial perception tests (DAT:SR, PSVT:R and MCT) and academic results in solid geometry. In addition, we also wish to determine the students' opinion with regard to the proposed activities. The results obtained confirm the interest in using IVLE to develop spatial abilities in engineering students. Substantial increases of 10,9% in DAT:SR, 8,8 % in PSVT:R and 9,5% in MCT between pre- and post-tests were found. Moreover, the students' opinion of IVLE/HMD activities is positive. The methodology can be summarized in the following steps: 1. Students take the DAT:SR , PSVT:R and MCT prior to the activities. They also answer the survey on other variables that can affect SA (1 h). 2. The students individually complete the exercises with the 3D modelling software SolidWorks (10 h). 3. The IVLE activities consist of the guided reading by the professor of the completed exercise. The professor addresses the concepts of solid geometry used in each step. The students have a few minutes to view with HMD the animation showing the construction of the geometric shape, and once the representation is finished, they can move freely throughout the scenario, using the keyboard options (6 h). 4. Students solve the (DAT:SR, PSVT:R and MCT after the IVLE activities. At the end, the groups answer the satisfaction survey (1 h). 5. All the students are evaluated on their knowledge of the solid geometry contents by means of a test and 3D modelling exercises similar to those done in class and those described in the IVRL (1h). 6. Finally, the analysis of the spatial abilities test data, the controlled variables survey, satisfaction surveys and the academic results obtained in the solid geometry module enable us to examine the correlations and the strongest determining factors in order to obtain good academic results and propose IVLE activities to improve the levels of spatial ability obtained on the tests. This paper describes the exploratory methodology used and its results.Postprint (published version

    Aluminium Process Fault Detection and Diagnosis

    Get PDF
    The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-oriented action in real working environments

    Updating the art history curriculum: incorporating virtual and augmented reality technologies to improve interactivity and engagement

    Get PDF
    Master's Project (M.Ed.) University of Alaska Fairbanks, 2017This project investigates how the art history curricula in higher education can borrow from and incorporate emerging technologies currently being used in art museums. Many art museums are using augmented reality and virtual reality technologies to transform their visitors' experiences into experiences that are interactive and engaging. Art museums have historically offered static visitor experiences, which have been mirrored in the study of art. This project explores the current state of the art history classroom in higher education, which is historically a teacher-centered learning environment and the learning effects of that environment. The project then looks at how art museums are creating visitor-centered learning environments; specifically looking at how they are using reality technologies (virtual and augmented) to transition into digitally interactive learning environments that support various learning theories. Lastly, the project examines the learning benefits of such tools to see what could (and should) be implemented into the art history curricula at the higher education level and provides a sample section of a curriculum demonstrating what that implementation could look like. Art and art history are a crucial part of our culture and being able to successfully engage with it and learn from it enables the spread of our culture through digital means and of digital culture

    A Review Of The Features Of Augmented Reality Science Textbook

    Get PDF
    This paper reviews several literatures concerning the features of Augmented Reality (AR) based textbook that could be applied for science learning in schools in order to make the learning process effective and interesting. The intervention of AR in science textbook could bring a tremendous impact on students’ attitude towards the science subject. Even though there are several other proven and astonishing technologies for learning, AR has been chosen because of its highly potential and immersive characteristics. AR overlays real and virtual environment and displays them simultaneously on a computer screen. This technology offers students with the ultimate imaginary and makes them feel the real experience with scientific concepts which is impossible to experience in real life. This paper identifies several interesting features that could be applied in science textbook. These features are able to cultivate positive attitude and motivate the students to perform well in the science subject. Even though, the existing textbook is comprehensive, there are some limitations that might influence students’ performance in the science subject. By adding some additional features into the textbook, it could overcome the limitations and motivates the students in the learning process. This paper will be of interest to researchers in the areas of Augmented Reality in education as well as science teachers in general. This paper aims to introduce AR based textbook so that it can be widely used in schools especially for science learning so as to motivate students to be more interested in science. The information about the features of Augmented Reality (AR) based textbook that have been discussed in this paper will hopefully be a very useful guidance for other researchers as well as science teachers in planning and developing their own AR based textboo

    Design and Implementation of Mobile Educational Games: Networks for Innovation

    Get PDF
    Research networks foster creativity and break down institutional barriers, but introduce geographic barriers to communication and collaboration. In designing mobile educational games, our distributed team took advantage of diverse talent pools and differing perspectives to drive forward a core vision of our design targets. Our strategies included intense design workshops, use of online meeting rooms, group paper and software prototyping, and dissemination of prototypes to other teams for refinement and repurposing. Our group showed strong activity at the university-centered nodes with periods of highly effective dissemination between these nodes and to outside groups; we used workshop invitations to gather new ideas and perspectives, to refine the core vision, to forge inter-project links, and to stay current on what was happening in other networks. Important aspects of our final deliverables came from looselyassociated network members who engaged via collaborative design exercises in workshops, emphasizing the need to bring the network together and the importance of outside influences as ideas evolve. Our final deliverable, a mobile educational game and a series of parallel technology demonstrations, reflect the mix of influences and the focus on iterated development that our network maintained
    corecore