5,422 research outputs found

    Reliability-based economic model predictive control for generalized flow-based networks including actuators' health-aware capabilities

    Get PDF
    This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalized flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamically allocate safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the considered case study.Peer ReviewedPostprint (author's final draft

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    Simulation Based Study of Safety Stocks under Short-Term Demand Volatility in Integrated Device Manufacturing.

    Get PDF
    © IEOM Society InternationalA problem faced by integrated device manufacturers (IDMs) relates to fluctuating demand and can be reflected in long-term demand, middle-term demand, and short-term demand fluctuations. This paper explores safety stock under short term demand fluctuations in integrated device manufacturing. The manufacturing flow of integrated circuits is conceptualized into front end and back end operations with a die bank in between. Using a model of the back-end operations of integrated circuit manufacturing, simulation experiments were conducted based on three scenarios namely a production environment of low demand volatility and high capacity reliability (Scenario A), an environment with lower capacity reliability than scenario A (Scenario B), and an environment of high demand volatility and low capacity reliability (Scenario C). Results show trade-off relation between inventory levels and delivery performance with varied degree of severity between the different scenarios studied. Generally, higher safety stock levels are required to achieve competitive delivery performance as uncertainty in demand increases and manufacturing capability reliability decreases. Back-end cycle time are also found to have detrimental impact on delivery performance as the cycle time increases. It is suggested that success of finished goods safety stock policy relies significantly on having appropriate capacity amongst others to support fluctuations

    An enhanced approximation mathematical model inventorying items in a multi-echelon system under a continuous review policy with probabilistic demand and lead-time

    Get PDF
    An inventory system attempts to balance between overstock and understock to reduce the total cost and achieve customer demand in a timely manner. The inventory system is like a hidden entity in a supply chain, where a large complete network synchronizes a series of interrelated processes for a manufacturer, in order to transform raw materials into final products and distribute them to customers. The optimality of inventory and allocation policies in a supply chain for a cement industry is still unknown for many types of multi-echelon inventory systems. In multi-echelon networks, complexity exists when the inventory issues appear in multiple tiers and whose performances are significantly affected by the demand and lead-time. Hence, the objective of this research is to develop an enhanced approximation mathematical model in a multi-echelon inventory system under a continuous review policy subject to probabilistic demand and lead-time. The probability distribution function of demand during lead-time is established by developing a new Simulation Model of Demand During Lead-Time (SMDDL) using simulation procedures. The model is able to forecast future demand and demand during lead-time. The obtained demand during lead-time is used to develop a Serial Multi-echelon Inventory (SMEI) model by deriving the inventory cost function to compute performance measures of the cement inventory system. Based on the performance measures, a modified distribution multi-echelon inventory (DMEI) model with the First Come First Serve (FCFS) rule (DMEI-FCFS) is derived to determine the best expected waiting time and expected number of retailers in the system based on a mean arrival rate and a mean service rate. This research established five new distribution functions for the demand during lead-time. The distribution functions improve the performance measures, which contribute in reducing the expected waiting time in the system. Overall, the approximation model provides accurate time span to overcome shortage of cement inventory, which in turn fulfil customer satisfaction

    A joint network design and mulit-echelon inventory optimisation approach for supply chain segmentation

    Get PDF
    Segmenting large supply chains into lean and agile segments has become a powerful strategy allowing companies to manage different market demands effectively. A current stream of research into supply chain segmentation proposes demand volume and variability as the key segmentation criteria. This literature adequately justifies these criteria and analyses the benefits of segmentation. However, current work fails to provide approaches for allocating products to segments which go beyond simple rules of thumb, such as 80-20 Pareto rules. We propose a joint network and safety stock optimisation model which optimally allocates Stock Keeping Units (SKUs) to segments. We use this model, populated both with synthetic data and data from a real case study and demonstrate that this approach significantly improves cost when compared to using simple rules of thumb alone
    • …
    corecore