16,715 research outputs found

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig

    On the design of optimal compliant walls for turbulence control

    Get PDF
    This paper employs the theoretical framework developed by Luhar et al. (J. Fluid Mech., 768, 415-441) to consider the design of compliant walls for turbulent skin friction reduction. Specifically, the effects of simple spring-damper walls are contrasted with the effects of more complex walls incorporating tension, stiffness and anisotropy. In addition, varying mass ratios are tested to provide insight into differences between aerodynamic and hydrodynamic applications. Despite the differing physical responses, all the walls tested exhibit some important common features. First, the effect of the walls (positive or negative) is greatest at conditions close to resonance, with sharp transitions in performance across the resonant frequency or phase speed. Second, compliant walls are predicted to have a more pronounced effect on slower-moving structures because such structures generally have larger wall-pressure signatures. Third, two-dimensional (spanwise constant) structures are particularly susceptible to further amplification. These features are consistent with many previous experiments and simulations, suggesting that mitigating the rise of such two-dimensional structures is essential to designing performance-improving walls. For instance, it is shown that further amplification of such large-scale two-dimensional structures explains why the optimal anisotropic walls identified by Fukagata et al. via DNS (J. Turb., 9, 1-17) only led to drag reduction in very small domains. The above observations are used to develop design and methodology guidelines for future research on compliant walls

    A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst

    No full text
    In this paper we present a transient, fully two-phase, non-isothermal model of carbon monoxide poisoning and oxygen bleeding in the membraneelectrode assembly of a polymer electrolyte fuel cell. The model includes a detailed description of mass, heat and charge transport, chemisorption,electrochemical oxidation and heterogeneous catalysis (when oxygen is introduced). Example simulation results demonstrate the ability of themodel to qualitatively capture the fundamental features of the poisoning process and the extent of poisoning with respect to channel temperatureand concentration. Further examples show how the multi-step kinetics can interact with other physical phenomena such as liquid-water flooding,particularly in the anode. Carbon monoxide pulsing is simulated to demonstrate that the complicated reaction kinetics of oxygen bleeding canbe captured and even predicted. It is shown that variations in the channel temperature have a convoluted effect on bleeding, and that trends inperformance on relatively short time scales can be the precise opposite of the trends observed at steady state. We incorporate a bi-functionalmechanism for carbon monoxide oxidation on platinum–ruthenium catalysts, demonstrating the marked reduction in the extent of poisoning, theeffect of variations in the platinum–ruthenium ratio and the influence of temperature. Finally, we discuss the implications of the results, extensionsto the model and possible avenues for experimental work

    CeRu4_4Sn6_6: heavy fermions emerging from a Kondo-insulating state

    Full text link
    The combination of low-temperature specific-heat and nuclear-magnetic-resonance (NMR) measurements reveals important information of the ground-state properties of CeRu4_4Sn6_6, which has been proposed as a rare example of a tetragonal Kondo-insulator (KI). The NMR spin-latticerelaxation rate 1/T11/T_1 deviates from the Korringa law below 100 K signaling the onset of an energy gap ΔEg1/kB≃30\Delta E_g1/k_B \simeq 30K. This gap is stable against magnetic fields up to 10 T. Below 10 K, however, unusual low-energy excitations of in-gap states are observed, which depend strongly on the field H. The specific heat C detects these excitations in the form of an enhanced Sommerfeld coefficient γ=C(T)/T\gamma = C(T)/T : In zero field, γ\gamma increases steeply below 5 K, reaching a maximum at 0.1 K, and then saturates at γ=0.6\gamma = 0.6 J/molK2^2. This maximum is shifted to higher temperatures with increasing field suggesting a residual density of states at the Fermi level developing a spin gap ΔEg2\Delta E_g2. A simple model, based on two narrow quasiparticle bands located at the Fermi level - which cross the Fermi level in zero field at 0.022 states/meV f.u. - can account qualitatively as well as quantitatively for the measured observables. In particular, it is demonstrated that fitting our data of both specific heat and NMR to the model, incorporating a Ce magnetic moment of μ=ΔEg1/μ0H≃1μB\mu = \Delta E_g1/\mu_{0H} \simeq 1 \mu_B, leads to the prediction of the field dependence of the gap. Our measurements rule out the presence of a quantum critical point as the origin for the enhanced γ\gamma in CeRu4_4Sn6_6 and suggest that this arises rather from correlated, residual in-gap states at the Fermi level. This work provides a fundamental route for future investigations into the phenomenon of narrow-gap formation in the strongly correlated class of systemComment: 11 pages, 13 figure
    • …
    corecore