3,407 research outputs found

    Extending THREDDS middleware to serve OGC community

    Get PDF
    International audienceAs far as interoperability is concerned, in a service-oriented framework, it is possible to distinguish different service tiers; each tier contains systems and tools which implement that tier's specific task. The present paper analyses such a framework for the Earth Sciences and the GIS information communities. For the Earth Sciences community, the heterogeneity of existing protocols and data models is outlined, considering the experience of the Unidata community. For the GIS community, the interoperability opportunities laid by the OGC's specifications are briefly introduced. The need of achieving the two communities' frameworks interoperability, and its importance for science Digital Library applications are introduced. A solution is presented and discussed; it is based on the following technologies: THREDDS Data Server, OGC WCS/WFS and ncML-GML. An OGC interoperability experiment, which tests the proposed solution, is briefly presented

    The apparatus of digital archaeology

    Get PDF
    Digital Archaeology is predicated upon an ever-changing set of apparatuses – technological, methodological, software, hardware, material, immaterial – which in their own ways and to varying degrees shape the nature of Digital Archaeology. Our attention, however, is perhaps inevitably more closely focussed on research questions, choice of data, and the kinds of analyses and outputs. In the process we tend to overlook the effects the tools themselves have on the archaeology we do beyond the immediate consequences of the digital. This paper introduces cognitive artefacts as a means of addressing the apparatus more directly within the context of the developing archaeological digital ecosystem. It argues that a critical appreciation of our computational cognitive artefacts is key to understanding their effects on both our own cognition and on the creation of archaeological knowledge. In the process, it defines a form of cognitive digital archaeology in terms of four distinct methods for extracting cognition from the digital apparatus layer by layer

    Dwelling on ontology - semantic reasoning over topographic maps

    Get PDF
    The thesis builds upon the hypothesis that the spatial arrangement of topographic features, such as buildings, roads and other land cover parcels, indicates how land is used. The aim is to make this kind of high-level semantic information explicit within topographic data. There is an increasing need to share and use data for a wider range of purposes, and to make data more definitive, intelligent and accessible. Unfortunately, we still encounter a gap between low-level data representations and high-level concepts that typify human qualitative spatial reasoning. The thesis adopts an ontological approach to bridge this gap and to derive functional information by using standard reasoning mechanisms offered by logic-based knowledge representation formalisms. It formulates a framework for the processes involved in interpreting land use information from topographic maps. Land use is a high-level abstract concept, but it is also an observable fact intimately tied to geography. By decomposing this relationship, the thesis correlates a one-to-one mapping between high-level conceptualisations established from human knowledge and real world entities represented in the data. Based on a middle-out approach, it develops a conceptual model that incrementally links different levels of detail, and thereby derives coarser, more meaningful descriptions from more detailed ones. The thesis verifies its proposed ideas by implementing an ontology describing the land use ‘residential area’ in the ontology editor Protégé. By asserting knowledge about high-level concepts such as types of dwellings, urban blocks and residential districts as well as individuals that link directly to topographic features stored in the database, the reasoner successfully infers instances of the defined classes. Despite current technological limitations, ontologies are a promising way forward in the manner we handle and integrate geographic data, especially with respect to how humans conceptualise geographic space

    Towards online mobile mapping using inhomogeneous lidar data

    Get PDF
    In this paper we present a novel approach to quickly obtain detailed 3D reconstructions of large scale environments. The method is based on the consecutive registration of 3D point clouds generated by modern lidar scanners such as the Velodyne HDL-32e or HDL-64e. The main contribution of this work is that the proposed system specifically deals with the problem of sparsity and inhomogeneity of the point clouds typically produced by these scanners. More specifically, we combine the simplicity of the traditional iterative closest point (ICP) algorithm with the analysis of the underlying surface of each point in a local neighbourhood. The algorithm was evaluated on our own collected dataset captured with accurate ground truth. The experiments demonstrate that the system is producing highly detailed 3D maps at the speed of 10 sensor frames per second

    Digitalization and Spatial Documentation of Post-Earthquake Temporary Housing in Central Italy: An Integrated Geomatic Approach Involving UAV and a GIS-Based System

    Get PDF
    Geoinformation and aerial data collection are essential during post-earthquake emergency response. This research focuses on the long-lasting spatial impacts of temporary solutions, which have persisted in regions of Central Italy affected by catastrophic seismic events over the past 25 years, significantly and permanently altering their landscapes. The paper analyses the role of geomatic and photogrammetric tools in documenting the emergency process and projects in post-disaster phases. An Atlas of Temporary Architectures is proposed, which defines a common semantic and geometric codification for mapping temporary housing from territorial to urban and building scales. The paper presents an implementation of attribute specification in existing official cartographic data, including geometric entities in a 3D GIS data model platform for documenting and digitalising these provisional contexts. To achieve this platform, UAV point clouds are integrated with non-metric data to ensure a complete description in a multiscalar approach. Accurate topographic modifications can be captured by extracting very high-resolution orthophotos and elevation models (DSM and DTM). The results have been validated in Visso (Macerata), a small historical mountain village in Central Italy which was heavily damaged by the seismic events of 2016/2017. The integrated approach overcomes the existing gaps and emphasizes the importance of managing heterogeneous geospatial emergency data for classification purposes. It also highlights the need to enhance an interoperable knowledge base method for post-disaster temporary responses. By combining geomatic tools with architectural studies, these visualization techniques can support national and local organizations responsible for post-earthquake management through a 3D modelling method to aid future transformations or interventions following other natural disasters
    corecore