10,368 research outputs found

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    Composite Differential Evolution for Constrained Evolutionary Optimization

    Get PDF
    When solving constrained optimization problems (COPs) by evolutionary algorithms, the search algorithm plays a crucial role. In general, we expect that the search algorithm has the capability to balance not only diversity and convergence but also constraints and objective function during the evolution. For this purpose, this paper proposes a composite differential evolution (DE) for constrained optimization, which includes three different trial vector generation strategies with distinct advantages. In order to strike a balance between diversity and convergence, one of these three trial vector generation strategies is able to increase diversity, and the other two exhibit the property of convergence. In addition, to accomplish the tradeoff between constraints and objective function, one of the two trial vector generation strategies for convergence is guided by the individual with the least degree of constraint violation in the population, and the other is guided by the individual with the best objective function value in the population. After producing offspring by the proposed composite DE, the feasibility rule and the ϵ constrained method are combined elaborately for selection in this paper. Moreover, a restart scheme is proposed to help the population jump out of a local optimum in the infeasible region for some extremely complicated COPs. By assembling the above techniques together, a constrained composite DE is proposed. The experiments on two sets of benchmark test functions with various features, i.e., 24 test functions from IEEE CEC2006 and 18 test functions with 10 dimensions and 30 dimensions from IEEE CEC2010, have demonstrated that the proposed method shows better or at least competitive performance against other state-of-the-art methods

    The Self-Organization of Interaction Networks for Nature-Inspired Optimization

    Full text link
    Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system

    Helper and Equivalent Objectives:Efficient Approach for Constrained Optimization

    Get PDF
    Numerous multi-objective evolutionary algorithms have been designed for constrained optimisation over past two decades. The idea behind these algorithms is to transform constrained optimisation problems into multi-objective optimisation problems without any constraint, and then solve them. In this paper, we propose a new multi-objective method for constrained optimisation, which works by converting a constrained optimisation problem into a problem with helper and equivalent objectives. An equivalent objective means that its optimal solution set is the same as that to the constrained problem but a helper objective does not. Then this multi-objective optimisation problem is decomposed into a group of sub-problems using the weighted sum approach. Weights are dynamically adjusted so that each subproblem eventually tends to a problem with an equivalent objective. We theoretically analyse the computation time of the helper and equivalent objective method on a hard problem called ``wide gap''. In a ``wide gap'' problem, an algorithm needs exponential time to cross between two fitness levels (a wide gap). We prove that using helper and equivalent objectives can shorten the time of crossing the ``wide gap''. We conduct a case study for validating our method. An algorithm with helper and equivalent objectives is implemented. Experimental results show that its overall performance is ranked first when compared with other eight state-of-art evolutionary algorithms on IEEE CEC2017 benchmarks in constrained optimisation

    The Self-Organization of Interaction Networks for Nature-Inspired Optimization

    Get PDF
    Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system

    The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm

    Full text link
    Resource management ensures that a project is completed on time and at cost, and that its quality is as previously defined; nevertheless, resources are scarce and their use in the activities of the project leads to conflicts in the schedule. Resource Leveling Problems consider how to make the resource consumption as efficient as possible. This paper presents a new Adaptive Genetic Algorithm for the Resource Leveling Problem with multiple resources, and its novelty lies in using the Weibull distribution to establish an estimation of the global optimum as a termination condition. The extension of the project deadline with a penalty is allowed, avoiding the increase in the project criticality punishing the shift of activities. The algorithmis tested with the standard Project Scheduling Problem Library PSPLIB, and a complete analysis and benchmarking test instances are presented. The proposed algorithm is implemented using VBA for Excel 2010 in order to provide a flexible and powerful decision support system that enables practitioners to choose between different feasible solutions to a problem, and in addition it is easily adjustable to the constraints and particular needs of each project in realistic environments.This study was partially funded by the Spanish Ministry of Science and Innovation (research project BIA2011-23602).Ponz Tienda, JL.; Yepes Piqueras, V.; Pellicer Armiñana, E.; Moreno Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction. 29(1):161-172. doi:10.1016/j.autcon.2012.10.003S16117229
    corecore