6,534 research outputs found

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Control/structure interaction design methodology

    Get PDF
    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3

    ATCOM: Automatically tuned collective communication system for SMP clusters.

    Get PDF
    Conventional implementations of collective communications are based on point-to-point communications, and their optimizations have been focused on efficiency of those communication algorithms. However, point-to-point communications are not the optimal choice for modern computing clusters of SMPs due to their two-level communication structure. In recent years, a few research efforts have investigated efficient collective communications for SMP clusters. This dissertation is focused on platform-independent algorithms and implementations in this area;There are two main approaches to implementing efficient collective communications for clusters of SMPs: using shared memory operations for intra-node communications, and over-lapping inter-node/intra-node communications. The former fully utilizes the hardware based shared memory of an SMP, and the latter takes advantage of the inherent hierarchy of the communications within a cluster of SMPs. Previous studies focused on clusters of SMP from certain vendors. However, the previously proposed methods are not portable to other systems. Because the performance optimization issue is very complicated and the developing process is very time consuming, it is highly desired to have self-tuning, platform-independent implementations. As proven in this dissertation, such an implementation can significantly outperform the other point-to-point based portable implementations and some platform-specific implementations;The dissertation describes in detail the architecture of the platform-independent implementation. There are four system components: shared memory-based collective communications, overlapping mechanisms for inter-node and intra-node communications, a prediction-based tuning module and a micro-benchmark based tuning module. Each component is carefully designed with the goal of automatic tuning in mind

    Computer-Integrated Design and Manufacture of Integrated Circuits

    Get PDF
    Contains research goals and objectives, reports on sixteen research projects and a list of publications.Defense Advanced Research Projects Agency/U.S. Navy Contract N00174-93-K-0035Defense Advanced Research Projects Agency/U.S. Army Contract DABT 63-95-C-0088Multisponsored Projects Industrial/MIT Leaders for Manufacturing Progra
    • …
    corecore