416 research outputs found

    Correcting Knowledge Base Assertions

    Get PDF
    The usefulness and usability of knowledge bases (KBs) is often limited by quality issues. One common issue is the presence of erroneous assertions, often caused by lexical or semantic confusion. We study the problem of correcting such assertions, and present a general correction framework which combines lexical matching, semantic embedding, soft constraint mining and semantic consistency checking. The framework is evaluated using DBpedia and an enterprise medical KB

    Leveraging literals for knowledge graph embeddings

    Get PDF
    Wissensgraphen (Knowledge Graphs, KGs) repräsentieren strukturierte Fakten, die sich aus Entitäten und den zwischen diesen bestehenden Relationen zusammensetzen. Um die Effizienz von KG-Anwendungen zu maximieren, ist es von Vorteil, KGs in einen niedrigdimensionalen Vektorraum zu transformieren. KGs folgen dem Paradigma einer offenen Welt (Open World Assumption, OWA), d. h. fehlende Information wird als potenziell möglich angesehen, wodurch ihre Verwendung in realen Anwendungsszenarien oft eingeschränkt wird. Link-Vorhersage (Link Prediction, LP) zur Vervollständigung von KGs kommt daher eine hohe Bedeutung zu. LP kann in zwei unterschiedlichen Modi durchgeführt werden, transduktiv und induktiv, wobei die erste Möglichkeit voraussetzt, dass alle Entitäten der Testdaten in den Trainingsdaten vorhanden sind, während die zweite Möglichkeit auch zuvor nicht bekannte Entitäten in den Testdaten zulässt. Die vorliegende Arbeit untersucht die Verwendung von Literalen in der transduktiven und induktiven LP, da KGs zahlreiche numerische und textuelle Literale enthalten, die eine wesentliche Semantik aufweisen. Zur Evaluierung dieser LP Methoden werden spezielle Benchmark-Datensätze eingeführt. Insbesondere wird eine neuartige KG Embedding (KGE) Methode, RAILD, vorgeschlagen, die Textliterale zusammen mit kontextuellen Graphinformationen für die LP nutzt. Das Ziel von RAILD ist es, die bestehende Forschungslücke beim Lernen von Embeddings für beim Training ungesehene Relationen zu schließen. Dafür wird eine Architektur vorgeschlagen, die Sprachmodelle (Language Models, LMs) mit Netzwerkembeddings kombiniert. Hierzu erfolgt ein Feintuning von leistungsstarken vortrainierten LMs wie BERT zum Zweck der LP, wobei textuelle Beschreibungen von Entitäten und Relationen genutzt werden. Darüber hinaus wird ein neuer Algorithmus, WeiDNeR, eingeführt, um ein Relationsnetzwerk zu generieren, das zum Erlernen graphbasierter Embeddings von Relationen unter Verwendung eines Netzwerkembeddingsmodells dient. Die Vektorrepräsentationen dieser Relationen werden für die LP kombiniert. Zudem wird ein weiteres neuartiges Embeddingmodell, LitKGE, vorgestellt, das numerische Literale für die transduktive LP verwendet. Es zielt darauf ab, numerische Merkmale für Entitäten durch Graphtraversierung zu erzeugen. Hierfür wird ein weiterer Algorithmus, WeiDNeR_Extended, eingeführt, der ein Netzwerk aus Objekt- und Datentypproperties erzeugt. Aus den aus diesem Netzwerk extrahierten Propertypfaden werden dann numerische Merkmale von Entitäten generiert. Des Weiteren wird der Einsatz eines mehrsprachigen LM zur Kodierung von Entitätenbeschreibungen in verschiedenen natürlichen Sprachen zum Zweck der LP untersucht. Für die Evaluierung der KGE-Modelle wurden die Benchmark-Datensätze LiterallyWikidata und Wikidata68K erstellt. Die vielversprechenden Ergebnisse, die mit den vorgestellten Modellen erzielt wurden, eröffnen interessante Fragestellungen für die zukünftige Forschung auf dem Gebiet der KGEs und ihrer Folgeanwendungen

    Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective

    Full text link
    Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as its relationship to current developments in neural-symbolic computing.Comment: Updated version, draft of accepted IJCAI2020 Survey Pape

    A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge

    Get PDF
    While knowledge graphs and their embedding into low dimensional vectors are established fields of research, they mostly cover factual knowledge. However, to improve downstream models, e. g. for predictive quality in real-world industrial use cases, embeddings of procedural knowledge, available in the form of rules, could be utilized. As such, we investigate which properties of embedding algorithms could prove beneficial in this scenario and evaluate which established embedding methodologies are suited to form the basis of sum-based embeddings of different representations of procedural knowledge

    Leveraging literals for knowledge graph embeddings

    Get PDF
    Nowadays, Knowledge Graphs (KGs) have become invaluable for various applications such as named entity recognition, entity linking, question answering. However, there is a huge computational and storage cost associated with these KG-based applications. Therefore, there arises the necessity of transforming the high dimensional KGs into low dimensional vector spaces, i.e., learning representations for the KGs. Since a KG represents facts in the form of interrelations between entities and also using attributes of entities, the semantics present in both forms should be preserved while transforming the KG into a vector space. Hence, the main focus of this thesis is to deal with the multimodality and multilinguality of literals when utilizing them for the representation learning of KGs. The other task is to extract benchmark datasets with a high level of difficulty for tasks such as link prediction and triple classification. These datasets could be used for evaluating both kind of KG Embeddings, those using literals and those which do not include literals

    Leveraging Literals for Knowledge Graph Embeddings

    Get PDF
    Nowadays, Knowledge Graphs (KGs) have become invaluable for various applications such as named entity recognition, entity linking, question answering. However, there is a huge computational and storage cost associated with these KG-based applications. Therefore, there arises the necessity of transforming the high dimensional KGs into low dimensional vector spaces, i.e., learning representations for the KGs. Since a KG represents facts in the form of interrelations between entities and also using attributes of entities, the semantics present in both forms should be preserved while transforming the KG into a vector space. Hence, the main focus of this thesis is to deal with the multimodality and multilinguality of literals when utilizing them for the representation learning of KGs. The other task is to extract benchmark datasets with a high level of difficulty for tasks such as link prediction and triple classification. These datasets could be used for evaluating both kind of KG Embeddings, those using literals and those which do not include literals
    • …
    corecore