6 research outputs found

    Incorporating lexico-semantic heuristics into coreference resolution sieves for named entity recognition at document-level

    Get PDF
    [Abstract] This paper explores the incorporation of lexico-semantic heuristics into a deterministic Coreference Resolution (CR) system for classifying named entities at document-level. The highest precise sieves of a CR tool are enriched with both a set of heuristics for merging named entities labeled with different classes and also with some constraints that avoid the incorrect merging of similar mentions. Several tests show that this strategy improves both NER labeling and CR. The CR tool can be applied in combination with any system for named entity recognition using the CoNLL format, and brings benefits to text analytics tasks such as Information Extraction. Experiments were carried out in Spanish, using three different NER tools.Ministerio de EconomĂ­a y Competitividad; FFI2014-51978-C2-1-RMinisterio de EconomĂ­a y Competitividad; FJCI-2014-2285

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Grounding event references in news

    Get PDF
    Events are frequently discussed in natural language, and their accurate identification is central to language understanding. Yet they are diverse and complex in ontology and reference; computational processing hence proves challenging. News provides a shared basis for communication by reporting events. We perform several studies into news event reference. One annotation study characterises each news report in terms of its update and topic events, but finds that topic is better consider through explicit references to background events. In this context, we propose the event linking task which—analogous to named entity linking or disambiguation—models the grounding of references to notable events. It defines the disambiguation of an event reference as a link to the archival article that first reports it. When two references are linked to the same article, they need not be references to the same event. Event linking hopes to provide an intuitive approximation to coreference, erring on the side of over-generation in contrast with the literature. The task is also distinguished in considering event references from multiple perspectives over time. We diagnostically evaluate the task by first linking references to past, newsworthy events in news and opinion pieces to an archive of the Sydney Morning Herald. The intensive annotation results in only a small corpus of 229 distinct links. However, we observe that a number of hyperlinks targeting online news correspond to event links. We thus acquire two large corpora of hyperlinks at very low cost. From these we learn weights for temporal and term overlap features in a retrieval system. These noisy data lead to significant performance gains over a bag-of-words baseline. While our initial system can accurately predict many event links, most will require deep linguistic processing for their disambiguation

    Weakly-supervised Learning Approaches for Event Knowledge Acquisition and Event Detection

    Get PDF
    Capabilities of detecting events and recognizing temporal, subevent, or causality relations among events can facilitate many applications in natural language understanding. However, supervised learning approaches that previous research mainly uses have two problems. First, due to the limited size of annotated data, supervised systems cannot sufficiently capture diverse contexts to distill universal event knowledge. Second, under certain application circumstances such as event recognition during emergent natural disasters, it is infeasible to spend days or weeks to annotate enough data to train a system. My research aims to use weakly-supervised learning to address these problems and to achieve automatic event knowledge acquisition and event recognition. In this dissertation, I first introduce three weakly-supervised learning approaches that have been shown effective in acquiring event relational knowledge. Firstly, I explore the observation that regular event pairs show a consistent temporal relation despite of their various contexts, and these rich contexts can be used to train a contextual temporal relation classifier to further recognize new temporal relation knowledge. Secondly, inspired by the double temporality characteristic of narrative texts, I propose a weakly supervised approach that identifies 287k narrative paragraphs using narratology principles and then extract rich temporal event knowledge from identified narratives. Lastly, I develop a subevent knowledge acquisition approach by exploiting two observations that 1) subevents are temporally contained by the parent event and 2) the definitions of the parent event can be used to guide the identification of subevents. I collect rich weak supervision to train a contextual BERT classifier and apply the classifier to identify new subevent knowledge. Recognizing texts that describe specific categories of events is also challenging due to language ambiguity and diverse descriptions of events. So I also propose a novel method to rapidly build a fine-grained event recognition system on social media texts for disaster management. My method creates high-quality weak supervision based on clustering-assisted word sense disambiguation and enriches tweet message representations using preceding context tweets and reply tweets in building event recognition classifiers

    Data and Methods for Reference Resolution in Different Modalities

    Get PDF
    One foundational goal of artificial intelligence is to build intelligent agents which interact with humans, and to do so, they must have the capacity to infer from human communication what concept is being referred to in a span of symbols. They should be able, like humans, to map these representations to perceptual inputs, visual or otherwise. In NLP, this problem of discovering which spans of text are referring to the same real-world entity is called Coreference Resolution. This dissertation expands this problem to go beyond text and maps concepts referred to by text spans to concepts represented in images. This dissertation also investigates the complex and hard nature of real world coreference resolution. Lastly, this dissertation expands upon the definition of references to include abstractions referred by non-contiguous text distributions. A central theme throughout this thesis is the paucity of data in solving hard problems of reference, which it addresses by designing several datasets. To investigate hard text coreference this dissertation analyses a domain of coreference heavy text, namely questions present in the trivia game of quiz bowl and creates a novel dataset. Solving quiz bowl questions requires robust coreference resolution and world knowledge, something humans possess but current models do not. This work uses distributional semantics for world knowledge. Also, this work addresses the sub-problems of coreference like mention detection. Next, to investigate complex visual representations of concepts, this dissertation uses the domain of paintings. Mapping spans of text in descriptions of paintings to regions of paintings being described by that text is a non-trivial problem because paintings are sufficiently harder than natural images. Distributional semantics are again used here. Finally, to discover prototypical concepts present in distributed rather than contiguous spans of text, this dissertation investigates a source which is rich in prototypical concepts, namely movie scripts. All movie narratives, character arcs, and character relationships, are distilled to sequences of interconnected prototypical concepts which are discovered using unsupervised deep learning models, also using distributional semantics. I conclude this dissertation by discussing potential future research in downstream tasks which can be aided by discovery of referring multi-modal concepts

    Harnessing sense-level information for semantically augmented knowledge extraction

    Get PDF
    Nowadays, building accurate computational models for the semantics of language lies at the very core of Natural Language Processing and Artificial Intelligence. A first and foremost step in this respect consists in moving from word-based to sense-based approaches, in which operating explicitly at the level of word senses enables a model to produce more accurate and unambiguous results. At the same time, word senses create a bridge towards structured lexico-semantic resources, where the vast amount of available machine-readable information can help overcome the shortage of annotated data in many languages and domains of knowledge. This latter phenomenon, known as the knowledge acquisition bottlneck, is a crucial problem that hampers the development of large-scale, data-driven approaches for many Natural Language Processing tasks, especially when lexical semantics is directly involved. One of these tasks is Information Extraction, where an effective model has to cope with data sparsity, as well as with lexical ambiguity that can arise at the level of both arguments and relational phrases. Even in more recent Information Extraction approaches where semantics is implicitly modeled, these issues have not yet been addressed in their entirety. On the other hand, however, having access to explicit sense-level information is a very demanding task on its own, which can rarely be performed with high accuracy on a large scale. With this in mind, in ths thesis we will tackle a two-fold objective: our first focus will be on studying fully automatic approaches to obtain high-quality sense-level information from textual corpora; then, we will investigate in depth where and how such sense-level information has the potential to enhance the extraction of knowledge from open text. In the first part of this work, we will explore three different disambiguation scenar- ios (semi-structured text, parallel text, and definitional text) and devise automatic disambiguation strategies that are not only capable of scaling to different corpus sizes and different languages, but that actually take advantage of a multilingual and/or heterogeneous setting to improve and refine their performance. As a result, we will obtain three sense-annotated resources that, when tested experimentally with a baseline system in a series of downstream semantic tasks (i.e. Word Sense Disam- biguation, Entity Linking, Semantic Similarity), show very competitive performances on standard benchmarks against both manual and semi-automatic competitors. In the second part we will instead focus on Information Extraction, with an emphasis on Open Information Extraction (OIE), where issues like sparsity and lexical ambiguity are especially critical, and study how to exploit at best sense-level information within the extraction process. We will start by showing that enforcing a deeper semantic analysis in a definitional setting enables a full-fledged extraction pipeline to compete with state-of-the-art approaches based on much larger (but noisier) data. We will then demonstrate how working at the sense level at the end of an extraction pipeline is also beneficial: indeed, by leveraging sense-based techniques, very heterogeneous OIE-derived data can be aligned semantically, and unified with respect to a common sense inventory. Finally, we will briefly shift the focus to the more constrained setting of hypernym discovery, and study a sense-aware supervised framework for the task that is robust and effective, even when trained on heterogeneous OIE-derived hypernymic knowledge
    corecore