11 research outputs found

    Tractable Quantification of Metastability for Robust Bipedal Locomotion

    Get PDF
    This work develops tools to quantify and optimize performance metrics for bipedal walking, toward enabling improved practical and autonomous operation of two-legged robots in real-world environments. While speed and energy efficiency of legged locomotion are both useful and straightforward to quantify, measuring robustness is arguably more challenging and at least as critical for obtaining practical autonomy in variable or otherwise uncertain environmental conditions, including rough terrain. The intuitive and meaningful robustness quantification adopted in this thesis begins by stochastic modeling of disturbances such as terrain variations, and conservatively defining what a failure is, for example falling down, slippage, scuffing, stance foot rotation, or a combination of such events. After discretizing the disturbance and state sets by meshing, step-to-step dynamics are studied to treat the system as a Markov chain. Then, failure rates can be easily quantified by calculating the expected number of steps before failure. Once robustness is measured, other performance metrics can also be easily incorporated into the cost function for optimization.For high performance and autonomous operation under variations, we adopt a capacious framework, exploiting a hierarchical control structure. The low-level controllers, which use only proprioceptive (internal state) information, are optimized by a derivative-free method without any constraints. For practicability of this process, developing an algorithm for fast and accurate computation of our robustness metric was a crucial and necessary step. While the outcome of optimization depends on capabilities of the controller scheme employed, the convenient and time-invariant parameterization presented in this thesis ensures accommodating large terrain variations. In addition, given environment estimation and state information, the high-level control is a behavioral policy to choose the right low-level controller at each step. In this thesis, optimal switching policies are determined by applying dynamic programming tools on Markov decision processes obtained through discretization. For desirable performance in practice from policies that are formed using meshing-based approximation to the true dynamics, robustness of high-level control to environment estimation and discretization errors are ensured by modeling stochastic noise in the terrain information and belief state while solving for behavioral policies

    The Runbot: engineering control applied to rehabilitation in spinal cord injury patients

    Get PDF
    Human walking is a complicated interaction among the musculoskeletal system, nervous system and the environment. An injury affecting the neurological system, such as a spinal cord injury (SCI) can cause sensor and motor deficits, and can result in a partial or complete loss of their ambulatory functions. Functional electrical stimulation (FES), a technique to generate artificial muscle contractions with the application of electrical current, has been shown to improve the ambulatory ability of patients with an SCI. FES walking systems have been used as a neural prosthesis to assist patients walking, but further work is needed to establish a system with reduced engineering complexity which more closely resembles the pattern of natural walking. The aim of this thesis was to develop a new FES gait assistance system with a simple and efficient FES control based on insights from robotic walking models, which can be used in patients with neuromuscular dysfunction, for example in SCI. The understanding of human walking is fundamental to develop suitable control strategies. Limit cycle walkers are capable of walking with reduced mechanical complexity and simple control. Walking robots based on this principle allow bio-inspired mechanisms to be analysed and validated in a real environment. The Runbot is a bipedal walker which has been developed based on models of reflexes in the human central nervous system, without the need for a precise trajectory algorithm. Instead, the timing of the control pattern is based on ground contact information. Taking the inspiration of bio-inspired robotic control, two primary objectives were addressed. Firstly, the development of a new reflexive controller with the addition of ankle control. Secondly, the development of a new FES walking system with an FES control model derived from the principles of the robotic control system. The control model of the original Runbot utilized a model of neuronal firing processes based on the complexity of the central neural system. As a causal relationship between foot contact information and muscle activity during human walking has been established, the control model was simplified using filter functions that transfer the sensory inputs into motor outputs, based on experimental observations in humans. The transfer functions were applied to the RunBot II to generate a stable walking pattern. A control system for walking was created, based on linear transfer functions and ground reaction information. The new control system also includes ankle control, which has not been considered before. The controller was validated in experiments with the new RunBot III. The successful generation of stable walking with the implementation of the novel reflexive robotic controller indicates that the control system has the potential to be used in controlling the strategies in neural prosthesis for the retraining of an efficient and effective gait. To aid of the development of the FES walking system, a reliable and practical gait phase detection system was firstly developed to provide correct ground contact information and trigger timing for the control. The reliability of the system was investigated in experiments with ten able-bodied subjects. Secondly, an automatic FES walking system was implemented, which can apply stimulation to eight muscles (four in each leg) in synchrony with the user’s walking activity. The feasibility and effectiveness of this system for gait assistance was demonstrated with an experiment in seven able-bodied participants. This thesis addresses the feasibility and effectiveness of applying biomimetic robotic control principles to FES control. The interaction among robotic control, biology and FES control in assistive neural prosthesis provides a novel framework to developing an efficient and effective control system that can be applied in various control applications

    Metastable legged-robot locomotion

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 195-215).A variety of impressive approaches to legged locomotion exist; however, the science of legged robotics is still far from demonstrating a solution which performs with a level of flexibility, reliability and careful foot placement that would enable practical locomotion on the variety of rough and intermittent terrain humans negotiate with ease on a regular basis. In this thesis, we strive toward this particular goal by developing a methodology for designing control algorithms for moving a legged robot across such terrain in a qualitatively satisfying manner, without falling down very often. We feel the definition of a meaningful metric for legged locomotion is a useful goal in and of itself. Specifically, the mean first-passage time (MFPT), also called the mean time to failure (MTTF), is an intuitively practical cost function to optimize for a legged robot, and we present the reader with a systematic, mathematical process for obtaining estimates of this MFPT metric. Of particular significance, our models of walking on stochastically rough terrain generally result in dynamics with a fast mixing time, where initial conditions are largely "forgotten" within 1 to 3 steps. Additionally, we can often find a near-optimal solution for motion planning using only a short time-horizon look-ahead. Although we openly recognize that there are important classes of optimization problems for which long-term planning is required to avoid "running into a dead end" (or off of a cliff!), we demonstrate that many classes of rough terrain can in fact be successfully negotiated with a surprisingly high level of long-term reliability by selecting the short-sighted motion with the greatest probability of success. The methods used throughout have direct relevance to machine learning, providing a physics-based approach to reduce state space dimensionality and mathematical tools to obtain a scalar metric quantifying performance of the resulting reduced-order system.by Katie Byl.Ph.D

    A contact-implicit direct trajectory optimization scheme for the study of legged maneuverability

    Get PDF
    For legged robots to move safely in unpredictable environments, they need to be manoeuvrable, but transient motions such as acceleration, deceleration and turning have been the subject of little research compared to constant-speed gait. They are difficult to study for two reasons: firstly, the way they are executed is highly sensitive to factors such as morphology and traction, and secondly, they can potentially be dangerous, especially when executed rapidly, or from high speeds. These challenges make it an ideal topic for study by simulation, as this allows all variables to be precisely controlled, and puts no human, animal or robotic subjects at risk. Trajectory optimization is a promising method for simulating these manoeuvres, because it allows complete motion trajectories to be generated when neither the input actuation nor the output motion is known. Furthermore, it produces solutions that optimize a given objective, such as minimizing the distance required to stop, or the effort exerted by the actuators throughout the motion. It has consequently become a popular technique for high-level motion planning in robotics, and for studying locomotion in biomechanics. In this dissertation, we present a novel approach to studying motion with trajectory optimization, by viewing it more as “trajectory generation” – a means of generating large quantities of synthetic data that can illuminate the differences between successful and unsuccessful motion strategies when studied in aggregate. One distinctive feature of this approach is the focus on whole-body models, which capture the specific morphology of the subject, rather than the highly-simplified “template” models that are typically used. Another is the use of “contact-implicit” methods, which allow an appropriate footfall sequence to be discovered, rather than requiring that it be defined upfront. Although contact-implicit methods are not novel, they are not widely-used, as they are computationally demanding, and unnecessary when studying comparatively-predictable constant speed locomotion. The second section of this dissertation describes innovations in the formulation of these trajectory optimization problems as nonlinear programming problems (NLPs). This “direct” approach allows these problems to be solved by general-purpose, open-source algorithms, making it accessible to scientists without the specialized applied mathematics knowledge required to solve NLPs. The design of the NLP has a significant impact on the accuracy of the result, the quality of the solution (with respect to the final value of the objective function), and the time required to solve the proble

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work
    corecore