123 research outputs found

    Experimental Evaluation of the Projection-based Force Reflection Algorithms for Haptic Interaction with Virtual Environment

    Get PDF
    Haptic interaction with virtual environments is currently a major and growing area of research with a number of emerging applications, particularly in the field of robotics. Digital implementation of the virtual environments, however, introduces errors which may result in instability of the haptic displays. This thesis deals with experimental investigation of the Projection-Based Force Reflection Algorithms (PFRAs) for haptic interaction with virtual environments, focusing on their performance in terms of stability and transparency. Experiments were performed to compare the PFRA in terms of performance for both non-delayed and delayed haptic interactions with more conventional haptic rendering methods, such as the Virtual Coupling (VC) and Wave Variables (WV). The results demonstrated that the PFRA is more stable, guarantees higher levels of transparency, and is less sensitive to decrease in update rates

    Haptics Rendering: Introductory Concepts

    Get PDF

    Trajectory Deformations from Physical Human-Robot Interaction

    Full text link
    Robots are finding new applications where physical interaction with a human is necessary: manufacturing, healthcare, and social tasks. Accordingly, the field of physical human-robot interaction (pHRI) has leveraged impedance control approaches, which support compliant interactions between human and robot. However, a limitation of traditional impedance control is that---despite provisions for the human to modify the robot's current trajectory---the human cannot affect the robot's future desired trajectory through pHRI. In this paper, we present an algorithm for physically interactive trajectory deformations which, when combined with impedance control, allows the human to modulate both the actual and desired trajectories of the robot. Unlike related works, our method explicitly deforms the future desired trajectory based on forces applied during pHRI, but does not require constant human guidance. We present our approach and verify that this method is compatible with traditional impedance control. Next, we use constrained optimization to derive the deformation shape. Finally, we describe an algorithm for real time implementation, and perform simulations to test the arbitration parameters. Experimental results demonstrate reduction in the human's effort and improvement in the movement quality when compared to pHRI with impedance control alone

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    A haptic stencil for manufacturing applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references (p. 86-90).The haptic stencil consists of a 5 DOF haptic device and an anti-collision algorithm that acts as a geometric stencil and can be used for a variety of applications ranging from training to rapid prototyping and manufacturing. Online manipulation of a three-axis desktop milling machine was established using this setup. This work describes the algorithm design used to achieve the required performance and stencil-like behavior with specific reference to machining applications. Some of the primary aspects of this design include the collision detection, collision remediation and control methodologies employed. The parameters on which these methodologies depended and how they were developed are the focus of this work. Collision detection is the core of any haptic interaction as it determines whether or not contact has been established between the virtual objects and therefore is essential in deciding the appropriate haptic feedback. In the case of the haptic stencil, the collision detection algorithm would have to identify whether or not contact occurs between the haptic probe-controlled tool object and the stationary part object. Collision remediation provides the stencil-like behavior by enforcing geometric constraints on the regions/surfaces by preventing penetration by the tool object. The results from the collision detection and collision remediation modules are used to control the desktop milling machine which cuts out a copy of the part object used in the haptic simulation from a given stock according to the motions specified on the haptic probe by the operator. Speed control is necessary in order to ensure that motions from the human operator are not lost due to the different communication speeds between the various modules of this setup.(cont.) Speed control also helps in providing as 'real-time' a machining experience as possible for a given part and stock combination.by Kirti Ramesh Mansukhani.S.M

    Surface Geometry and the Haptic Rendering of Rigid Point Contacts

    Get PDF
    This thesis examines the haptic rendering of rigid point contacts in virtual simulations. The haptic renderers generate force feedback so that the operator can interact with the virtual scenes in a realistic way. They must be able to recreate the physical phenomena experienced in the real world without displaying any haptic artifacts. The existing renderers are decomposed into a projection function and a regulation scheme. It is shown that the pop-through artifact, whereby the virtual tool instantaneously jumps between two distant surface points, is caused whenever the operator encounters a singularity within the renderer's projection function. This was well known for the minimum distance based renderers, but it is shown here that such singularities arise with the constraint based renderers as well. A new projection function is designed to minimize the existence of singularities within the model. When paired with an appropriate regulation scheme, this forms the proposed mapping renderer. The new projection is calculated by mapping the model onto a canonical shape where the haptic problem is trivial, e.g. a circle in the case of a 2D model of genus zero, which avoids pop-through on smooth models. The haptic problem is then recast as a virtual constraint problem, where the traditional regulation schemes, designed originally for planar surfaces, are shown to introduce a velocity dependent error on curved surfaces that can distort the model's rendering and to couple the regulation towards and dynamics along the constraint. Set stabilization control, based on feedback linearizing the haptic device with respect to a virtual output consisting of coordinates transversal and tangential to the model surface, is proposed as an alternative. It is shown to be able to decouple the system into transversal and tangential subsystems that can then be made asymptotically stable and assigned arbitrary dynamics, respectively

    Design optimization and control of a parallel lower-arm exoskeleton

    Get PDF
    Wearable force feedback robotic devices, haptic exoskeletons, are becoming increasingly common as they find widespread use in medical and virtual reality (VR) applications. Allowing users to mechanically interact with computationally mediated environments, haptic exoskeletons provide users with better “immersion” to VR environments. Design of haptic exoskeletons is a challenging task, since in addition to being ergonomic and light weight, such devices are also required to satisfy the demands of any ideal force-feedback device: ability withstand human applied forces with very high stiffness and capacity to display a full range of impedances down to the minimum value human can perceive. If not properly designed by taking these conflicting requirements into account, the interface can significantly deteriorate the transparency of displayed forces; therefore, the choice of the kinematic structure and determination of the dimensions of this kinematic structure have significant impacts on the overall performance of any haptic display independent of the control algorithm employed. In this thesis, we first propose a general framework for optimal dimensional synthesis of haptic interfaces, in particular for haptic interfaces with closed kinematic chains, with respect to multiple design objectives. We identify and categorize the relevant performance criteria for the force feedback exoskeletons and address the trade-offs between them, by applying a Pareto-front based multi-objective design optimization procedure. Utilizing a fast converging gradient-based method, the proposed framework is computational efficient. Moreover, the approach is applicable to any set of performance indices and extendable to include any number of design criteria. Subsequently, we extend this framework to assist the selection of the most appropriate kinematic structure among multiple mechanisms. Specifically, we perform a rigorous comparison between two spherical parallel mechanisms (SPMs) that satisfy the ergonomic necessities of a human forearm and wrist and select the kinematic structure that results in superior performance for force-feedback applications. Utilizing the Pareto optimal set of solutions, we also assign dimensions to this mechanism to ensure an optimal trade-off between global kinematic and dynamic performance. Following the design optimization phase, we perform kinematic and dynamic analyses of the SPM-based exoskeleton in independent coordinates to facilitate efficient simulation and real-time implementation of model based controllers. We decide on the hardware components considering human wrist torque and force limits, safety and ergonomy constraints, and present the CAD model of a prototype of the exoskeleton. Finally, we implement model based task-space position and impedance controllers in simulation and present the results of them

    Sistema de aquisição de dados por interface háptica

    Get PDF
    Mestrado em Engenharia MecânicaNeste trabalho e apresentada uma interface háptica com realimentação de força para a teleoperação de um robô humanoide é que aborda um novo conceito destinado à aprendizagem por demonstração em robôs, denominado de ensino telecinestésico. A interface desenvolvida pretende promover o ensino cinestésico num ambiente de tele-robótica enriquecido pela virtualização háptica do ambiente e restrições do robô. Os dados recolhidos através desta poderão então ser usados em aprendizagem por demonstração, uma abordagem poderosa que permite aprender padrões de movimento sem a necessidade de modelos dinâmicos complexos, mas que geralmente é apresentada com demonstrações que não são fornecidas teleoperando os robôs. Várias experiências são referidas onde o ensino cinestésico em aprendizagem robótica foi utilizado com um sucesso considerável, bem como novas metodologias e aplicações com aparelhos hápticos. Este trabalho foi realizado com base na plataforma proprietária de 27 graus-de-liberdade do Projeto Humanoide da Universidade de Aveiro (PHUA), definindo novas methodologias de comando em tele-operação, uma nova abordagem de software e ainda algumas alterações ao hardware. Um simulador de corpo inteiro do robô em MATLAB SimMechanics é apresentado que é capaz de determinar os requisitos dinâmicos de binário de cada junta para uma dada postura ou movimento, exemplificando com um movimento efectuado para subir um degrau. Ir a mostrar algumas das potencialidades mas também algumas das limitações restritivas do software. Para testar esta nova abordagem tele-cinestésica são dados exemplos onde o utilizador pode desenvolver demonstrações interagindo fisicamente com o robô humanoide através de um joystick háptico PHANToM. Esta metodologia ir a mostrar que permite uma interação natural para o ensino e perceção tele-robóticos, onde o utilizador fornece instruções e correções funcionais estando ciente da dinâmica do sistema e das suas capacidades e limitações físicas. Ser a mostrado que a abordagem consegue atingir um bom desempenho mesmo com operadores inexperientes ou não familiarizados com o sistema. Durante a interação háptica, a informação sensorial e as ordens que guiam a uma tarefa específica podem ser gravados e posteriormente utilizados para efeitos de aprendizagem.In this work an haptic interface using force feedback for the teleoperation of a humanoid robot is presented, that approaches a new concept for robot learning by demonstration known as tele-kinesthethic teaching. This interface aims at promoting kinesthethic teaching in telerobotic environments enriched by the haptic virtualization of the robot's environment and restrictions. The data collected through this interface can later be in robot learning by demonstration, a powerful approach for learning motion patterns without complex dynamical models, but which is usually presented using demonstrations that are not provided by teleoperating the robots. Several experiments are referred where kinesthetic teaching for robot learning was used with considerable success, as well as other new methodologies and applications with haptic devices. This work was conducted on the proprietary 27 DOF University of Aveiro Humanoid Project (PHUA) robot, de ning new wiring and software solutions, as well as a new teleoperation command methodology. A MATLAB Sim- Mechanics full body robot simulator is presented that is able to determine dynamic joint torque requirements for a given robot movement or posture, exempli ed with a step climbing application. It will show some of the potentialities but also some restricting limitations of the software. To test this new tele-kinesthetic approach, examples are shown where the user can provide demonstrations by physically interacting with the humanoid robot through a PHANToM haptic joystick. This methodology will show that it enables a natural interface for telerobotic teaching and sensing, in which the user provides functional guidance and corrections while being aware of the dynamics of the system and its physical capabilities and / or constraints. It will also be shown that the approach can have a good performance even with inexperienced or unfamiliarized operators. During haptic interaction, the sensory information and the commands guiding the execution of a speci c task can be recorded and that data log from the human-robot interaction can be later used for learning purposes

    Master of Science

    Get PDF
    thesisIncreased demand for powered wheelchairs and their inherent mobility limitations have prompted the development of omnidirectional wheelchairs. These wheelchairs provide improved mobility in confined spaces, but can be more difficult to control and impact the ability of the user to embody the wheelchair. We hypothesize that control and embodiment of omnidirectional wheelchairs can be improved by providing intuitive control with three degree of freedom (3-DOF) haptic feedback that directly corresponds to the degrees of freedom of an omnidirectional wheelchair. This thesis introduces a novel 3-DOF Haptic Joystick designed for the purpose of controlling omnidirectional wheelchairs. When coupled with range finders, it is able to provide the user with feedback that improves the operator's awareness of the area surrounding the vehicle and assists the driver in obstacle avoidance. The haptic controller design and a stability analysis of the coupled wheelchair joystick systems are presented. Experimental results from the coupled systems validate the ability of the controller to influence the trajectory of the wheelchair and assist in obstacle avoidance

    Complementary Situational Awareness for an Intelligent Telerobotic Surgical Assistant System

    Get PDF
    Robotic surgical systems have contributed greatly to the advancement of Minimally Invasive Surgeries (MIS). More specifically, telesurgical robots have provided enhanced dexterity to surgeons performing MIS procedures. However, current robotic teleoperated systems have only limited situational awareness of the patient anatomy and surgical environment that would typically be available to a surgeon in an open surgery. Although the endoscopic view enhances the visualization of the anatomy, perceptual understanding of the environment and anatomy is still lacking due to the absence of sensory feedback. In this work, these limitations are addressed by developing a computational framework to provide Complementary Situational Awareness (CSA) in a surgical assistant. This framework aims at improving the human-robot relationship by providing elaborate guidance and sensory feedback capabilities for the surgeon in complex MIS procedures. Unlike traditional teleoperation, this framework enables the user to telemanipulate the situational model in a virtual environment and uses that information to command the slave robot with appropriate admittance gains and environmental constraints. Simultaneously, the situational model is updated based on interaction of the slave robot with the task space environment. However, developing such a system to provide real-time situational awareness requires that many technical challenges be met. To estimate intraoperative organ information continuous palpation primitives are required. Intraoperative surface information needs to be estimated in real-time while the organ is being palpated/scanned. The model of the task environment needs to be updated in near real-time using the estimated organ geometry so that the force-feedback applied on the surgeon's hand would correspond to the actual location of the model. This work presents a real-time framework that meets these requirements/challenges to provide situational awareness of the environment in the task space. Further, visual feedback is also provided for the surgeon/developer to view the near video frame rate updates of the task model. All these functions are executed in parallel and need to have a synchronized data exchange. The system is very portable and can be incorporated to any existing telerobotic platforms with minimal overhead
    corecore