310 research outputs found

    Frequency Control Reserve With Multiple Micro Grid Participation For Power System Frequency Stability

    Get PDF
    The introduction of this micro grids into the conventional distribution network system forces a new challenge to the system operation. The failure factor of the power system performance essentially due to the limitation of electrical power generation in which could not meet the load demand. In order to maintain the frequency stability of the system, the power sources must be matched instantaneously among all generators and constantly supply to the load demand. A deviation of system frequency from the set-point value will affect the entire stability of power system network. This paper investigates the impact of utilizing multiple micro grids in supporting and facilitating on grid’s frequency. A method called Frequency Control Reserve (FCR) is introduced, with intention to share the excessive power from all available micro grids. These power will be controlled effectively before being injected into the main grid to stabilize the power frequency. Simulation using MATLAB Simulink have been used to simulate the result and shows great potential to be integrated with distributed generation i.e. solar photovoltaic (PV) for Malaysia power system vicinit

    An Improved UFLS Scheme based on Estimated Minimum Frequency and Power Deficit

    Get PDF
    In the event of a power system disturbance, it is important that the decision to implement under frequency load shedding is based on both the minimum frequency and the magnitude of the disturbance. In this paper, we propose the use of higher order polynomial curve fitting to estimate the minimum frequency. If the prediction shows that the minimum frequency threshold will be violated, the magnitude of the total disturbance is estimated using the swing equation. In addition, the minimum amount of load that must be shed to restore the frequency just above the minimum value can also be directly calculated. Simulations are carried out for the considered Taiwan power system and the results prove the efficiency of the proposed technique

    Demand response for frequency control of multi-area power system

    Get PDF

    Dynamic modeling of multiple microgrid clusters using regional demand response programs

    Get PDF
    Preserving the frequency stability of multiple microgrid clusters is a serious challenge. This work presents a dynamic model of multiple microgrid clusters with different types of distributed energy resources (DERs) and energy storage systems (ESSs) that was used to examine the load frequency control (LFC) of microgrids. The classical proportional integral derivative (PID) controllers were designed to tune the frequency of microgrids. Furthermore, an imperialist competitive algorithm (ICA) was proposed to investigate the frequency deviations of microgrids by considering renewable energy resources (RERs) and their load uncertainties. The simulation results confirmed the performance of the optimized PID controllers under different disturbances. Furthermore, the frequency control of the microgrids was evaluated by applying regional demand response programs (RDRPs). The simulation results showed that applying the RDRPs caused the damping of frequency fluctuations

    Optimal power flow considering voltage stability with significant wind penetration

    Get PDF
    Voltage stability evaluation is one of the major issues in the power system operation and control. One reason is that there is an enormous number of voltage collapses which frequently occurs. The principal objective of this thesis is to choose appropriate criteria for voltage stability evaluation in optimal power flow (OPF) approach considering the worst contingency or the congested condition. Voltage stability can be affected by several elements and control ways which operate on different time scales. In particular, the role of wind power generation, demand response (DR), over excitation limiter (OXL), energy storage system (ESS) and on-load tap changer (OLTC) are significant. The proper modelling of these elements and control ways as well as using in an OPF approach should be analyzed in longterm voltage stability. First, an impedance-based (IB) index is presented in this thesis that can evaluate unstable behavior of the power system with doubly-fed induction generator (DFIG) wind farms integration. A model for DFIG capability curve limits is presented that can be integrated to the internal circuit of the generator. Furthermore, the OLTC model was added to this index. The index uses the concept of coupled single-port circuit. The OPF with new IB-index constraint is implemented to show the performance of the index. This study also introduces a multi-objective stochastic optimal power flow (SOPF) approach with the presence of uncertain wind power generations. The multi-objective SOPF investigates the operating cost, voltage stability and emission effects as the objective functions. The effect of the DR program is considered in this study. The fuzzification technique is used to normalize all objective functions in the multi-objective SOPF. A line voltage stability index (LVSI) is presented and compared with other LVSIs. The proposed multi-objective SOPF is also carried out with different existing LVSIs as the objective functions. Following the voltage stability assessment, the frequency control is also considered in the SOPF. In this case, the frequency restoration scheme cooperates with DR and spinning reserve to stop a frequency drop in contingency events. This scheme is defined in three levels. Furthermore, an extended-L (EL) index is used to evaluate voltage stability analysis. Several frequency and voltage constraints are added in the SOPF approach. The EL-index considers a generator equivalent model (GEM). In addition, energy storage systems (ESSs) are considered in this SOPF approach. Those approaches are analyzed in detail and they are tested and validated on several case studies. The results show that the proposed approaches operate successfully

    Low-carbon Energy Transition and Planning for Smart Grids

    Get PDF
    With the growing concerns of climate change and energy crisis, the energy transition from fossil-based systems to a low-carbon society is an inevitable trend. Power system planning plays an essential role in the energy transition of the power sector to accommodate the integration of renewable energy and meet the goal of decreasing carbon emissions while maintaining the economical, secure, and reliable operations of power systems. In this thesis, a low-carbon energy transition framework and strategies are proposed for the future smart grid, which comprehensively consider the planning and operation of the electricity networks, the emission control strategies with the carbon response of the end-users, and carbon-related trading mechanisms. The planning approach considers the collaborative planning of different types of networks under the smart grid context. Transportation electrification is considered as a key segment in the energy transition of power systems, so the planning of charging infrastructure for electric vehicles (EVs) and hydrogen refueling infrastructure for fuel cell electric vehicles is jointly solved with the electricity network expansion. The vulnerability assessment tools are proposed to evaluate the coupled networks towards extreme events. Based on the carbon footprint tracking technologies, emission control can be realized from both the generation side and the demand side. The operation of the low-carbon oriented power system is modeled in a combined energy and carbon market, which fully considers the carbon emission right trading and renewable energy certificates trading of the market participants. Several benchmark systems have been used to demonstrate the effectiveness of the proposed planning approach. Comparative studies to existing approaches in the literature, where applicable, have also been conducted. The simulation results verify the practical applicability of this method
    corecore