2,580 research outputs found

    Informed selection and use of training examples for knowledge refinement.

    Get PDF
    Knowledge refinement tools seek to correct faulty rule-based systems by identifying and repairing faults indicated by training examples that provide evidence of faults. This thesis proposes mechanisms that improve the effectiveness and efficiency of refinement tools by the best use and selection of training examples. The refinement task is sufficiently complex that the space of possible refinements demands a heuristic search. Refinement tools typically use hill-climbing search to identify suitable repairs but run the risk of getting caught in local optima. A novel contribution of this thesis is solving the local optima problem by converting the hill-climbing search into a best-first search that can backtrack to previous refinement states. The thesis explores how different backtracking heuristics and training example ordering heuristics affect refinement effectiveness and efficiency. Refinement tools rely on a representative set of training examples to identify faults and influence repair choices. In real environments it is often difficult to obtain a large set of training examples, since each problem-solving task must be labelled with the expert's solution. Another novel aspect introduced in this thesis is informed selection of examples for knowledge refinement, where suitable examples are selected from a set of unlabelled examples, so that only the subset requires to be labelled. Conversely, if a large set of labelled examples is available, it still makes sense to have mechanisms that can select a representative set of examples beneficial for the refinement task, thereby avoiding unnecessary example processing costs. Finally, an experimental evaluation of example utilisation and selection strategies on two artificial domains and one real application are presented. Informed backtracking is able to effectively deal with local optima by moving search to more promising areas, while informed ordering of training examples reduces search effort by ensuring that more pressing faults are dealt with early on in the search. Additionally, example selection methods achieve similar refinement accuracy with significantly fewer examples

    Theory and Techniques for Synthesizing a Family of Graph Algorithms

    Full text link
    Although Breadth-First Search (BFS) has several advantages over Depth-First Search (DFS) its prohibitive space requirements have meant that algorithm designers often pass it over in favor of DFS. To address this shortcoming, we introduce a theory of Efficient BFS (EBFS) along with a simple recursive program schema for carrying out the search. The theory is based on dominance relations, a long standing technique from the field of search algorithms. We show how the theory can be used to systematically derive solutions to two graph algorithms, namely the Single Source Shortest Path problem and the Minimum Spanning Tree problem. The solutions are found by making small systematic changes to the derivation, revealing the connections between the two problems which are often obscured in textbook presentations of them.Comment: In Proceedings SYNT 2012, arXiv:1207.055

    Engineering LaCAM∗^\ast: Towards Real-Time, Large-Scale, and Near-Optimal Multi-Agent Pathfinding

    Full text link
    This paper addresses the challenges of real-time, large-scale, and near-optimal multi-agent pathfinding (MAPF) through enhancements to the recently proposed LaCAM* algorithm. LaCAM* is a scalable search-based algorithm that guarantees the eventual finding of optimal solutions for cumulative transition costs. While it has demonstrated remarkable planning success rates, surpassing various state-of-the-art MAPF methods, its initial solution quality is far from optimal, and its convergence speed to the optimum is slow. To overcome these limitations, this paper introduces several improvement techniques, partly drawing inspiration from other MAPF methods. We provide empirical evidence that the fusion of these techniques significantly improves the solution quality of LaCAM*, thus further pushing the boundaries of MAPF algorithms.Comment: 20 page

    Geneplanner: A Prototype of an expert system to assist with chemical DNA gene synthesis planning

    Get PDF
    Expert systems are a popular area of artificial intelligence. The development of an expert system involves the selection of an appropriate problem, acquisition of knowledge from the expert, selection of control mechanisms and knowledge repre sentations, selection of tools, implementation, and testing. This thesis describes the development of a prototype expert system in the area of genetic engineering. The prototype system suggests the fragments of DNA to chemically synthesize and the steps for joining these fragments in order to make a gene. The system follows the hueristic rules of an expert to select the fragments and strategy for synthesis, backtracking where necessary. After reviewing expert systems and the problem area, the thesis focuses on the development process. Each of the steps is discussed, and the iterative nature of implementation, testing, and refinement is displayed. Results are reviewed, showing Geneplanner to handle simple to moder ate cases fairly well. Finally, shortcomings are discussed and future enhancements are suggested

    Maximum common subgraph isomorphism algorithms for the matching of chemical structures

    Get PDF
    The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks

    Structured development of problem solving methods

    Get PDF
    • …
    corecore