13,575 research outputs found

    Charge Lattices and Consistency of 6D Supergravity

    Get PDF
    We extend the known consistency conditions on the low-energy theory of six-dimensional N = 1 supergravity. We review some facts about the theory of two-form gauge fields and conclude that the charge lattice Gamma for such a theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions in the supergravity theory determine a sublattice of Gamma. The condition that this sublattice can be extended to a self-dual lattice Gamma leads to a strong constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added; v3: minor corrections and clarifications added, JHEP versio

    Ambiguous correlation

    Full text link
    Many decisions are made in environments where outcomes are determined by the realization of multiple random events. A decision maker may be uncertain how these events are related. We identify and experimentally substantiate behavior that intuitively reflects a lack of confidence in their joint distribution. Our findings suggest a dimension of ambiguity which is different from that in the classical distinction between risk and "Knightian uncertainty"

    Hidden Quantum Group Structure in Einstein's General Relativity

    Get PDF
    A new formal scheme is presented in which Einstein's classical theory of General Relativity appears as the common, invariant sector of a one-parameter family of different theories. This is achieved by replacing the Poincare` group of the ordinary tetrad formalism with a q-deformed Poincare` group, the usual theory being recovered at q=1. Although written in terms of noncommuting vierbein and spin-connection fields, each theory has the same metric sector leading to the ordinary Einstein-Hilbert action and to the corresponding equations of motion. The Christoffel symbols and the components of the Riemann tensor are ordinary commuting numbers and have the usual form in terms of a metric tensor built as an appropriate bilinear in the vierbeins. Furthermore we exhibit a one-parameter family of Hamiltonian formalisms for general relativity, by showing that a canonical formalism a` la Ashtekar can be built for any value of q. The constraints are still polynomial, but the Poisson brackets are not skewsymmetric for q different from 1.Comment: LaTex file, 21 pages, no figure

    Spinning Particle Dynamics on Six-Dimensional Minkowski Space

    Get PDF
    Massive spinning particle in 6d6d-Minkowski space is described as a mechanical system with the configuration space R5,1×CP3R^{5,1} \times CP^3. The action functional of the model is unambiguously determined by the requirement of identical (off-shell) conservation for the phase-space counterparts of three Casimir operators of Poincar\'e group. The model proves to be completely solvable. Its generalization to the constant curvature background is presented. Canonical quantization of the theory leads to the relativistic wave equations for the irreducible 6d6d fields.Comment: 21 pages, LaTe

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Quintessence in a quandary: prior dependence in dark energy models

    Get PDF
    The archetypal theory of dark energy is quintessence: a minimally coupled scalar field with a canonical kinetic energy and potential. By studying random potentials we show that quintessence imposes a restricted set of priors on the equation of state of dark energy. Focusing on the commonly-used parametrisation, w(a)w0+wa(1a)w(a)\approx w_0+w_a(1-a), we show that there is a natural scale and direction in the (w0,wa)(w_0, w_a) plane that distinguishes quintessence as a general framework. We calculate the expected information gain for a given survey and show that, because of the non-trivial prior information, it is a function of more than just the figure of merit. This allows us to make a quantitative case for novel survey strategies. We show that the scale of the prior sets target observational requirements for gaining significant information. This corresponds to a figure of merit FOM200\gtrsim 200, a requirement that future galaxy redshift surveys will meet.Comment: 5 pages, 3 figures. For the busy reader, Fig. 1 is the money plot. v2: Minor changes, matches published version. Code open source at gitorious.org/random-quintessenc
    corecore