2,067 research outputs found

    Formalising Human Mental Workload as a Defeasible Computational Concept

    Get PDF
    Human mental workload has gained importance, in the last few decades, as a fundamental design concept in human-computer interaction. It can be intuitively defined as the amount of mental work necessary for a person to complete a task over a given period of time. For people interacting with interfaces, computers and technological devices in general, the construct plays an important role. At a low level, while processing information, often people feel annoyed and frustrated; at higher level, mental workload is critical and dangerous as it leads to confusion, it decreases the performance of information processing and it increases the chances of errors and mistakes. It is extensively documented that either mental overload or underload negatively affect performance. Hence, designers and practitioners who are ultimately interested in system or human performance need answers about operator workload at all stages of system design and operation. At an early system design phase, designers require some explicit model to predict the mental workload imposed by their technologies on end-users so that alternative system designs can be evaluated. However, human mental workload is a multifaceted and complex construct mainly applied in cognitive sciences. A plethora of ad-hoc definitions can be found in the literature. Generally, it is not an elementary property, rather it emerges from the interaction between the requirements of a task, the circumstances under which it is performed and the skills, behaviours and perceptions of the operator. Although measuring mental workload has advantages in interaction and interface design, its formalisation as an operational and computational construct has not sufficiently been addressed. Many researchers agree that too many ad-hoc models are present in the literature and that they are applied subjectively by mental workload designers thereby limiting their application in different contexts and making comparison across different models difficult. This thesis introduces a novel computational framework for representing and assessing human mental workload based on defeasible reasoning. The starting point is the investigation of the nature of human mental workload that appears to be a defeasible phenomenon. A defeasible concept is a concept built upon a set of arguments that can be defeated by adding additional arguments. The word ‘defeasible’ is inherited from defeasible reasoning, a form of reasoning built upon reasons that can be defeated. It is also known as non-monotonic reasoning because of the technical property (non-monotonicity) of the logical formalisms that are aimed at modelling defeasible reasoning activity. Here, a conclusion or claim, derived from the application of previous knowledge, can be retracted in the light of new evidence. Formally, state-of-the-art defeasible reasoning models are implemented employing argumentation theory, a multi-disciplinary paradigm that incorporates elements of philosophy, psychology and sociology. It systematically studies how arguments can be built, sustained or discarded in a reasoning process, and it investigates the validity of their conclusions. Since mental workload can be seen as a defeasible phenomenon, formal defeasible argumentation theory may have a positive impact in its representation and assessment. Mental workload can be captured, analysed, and measured in ways that increase its understanding allowing its use for practical activities. The research question investigated here is whether defeasible argumentation theory can enhance the representation of the construct of mental workload and improve the quality of its assessment in the field of human-computer interaction. In order to answer this question, recurrent knowledge and evidence employed in state-of-the-art mental workload measurement techniques have been reviewed in the first place as well as their defeasible and non-monotonic properties. Secondly, an investigation of the state-of-the-art computational techniques for implementing defeasible reasoning has been carried out. This allowed the design of a modular framework for mental workload representation and assessment. The proposed solution has been evaluated by comparing the properties of sensitivity, diagnosticity and validity of the assessments produced by two instances of the framework against the ones produced by two well known subjective mental workload assessments techniques (the Nasa Task Load Index and the Workload Profile) in the context of human-web interaction. In detail, through an empirical user study, it has been firstly demonstrated how these two state-of-the-art techniques can be translated into two particular instances of the framework while still maintaining the same validity. In other words, the indexes of mental workload inferred by the two original instruments, and the ones generated by their corresponding translations (instances of the framework) showed a positive and nearly perfect statistical correlation. Additionally, a new defeasible instance built with the framework showed a better sensitivity and a higher diagnosticity capacity than the two selected state-of-the art techniques. The former showed a higher convergent validity with the latter techniques, but a better concurrent validity with performance measures. The new defeasible instance generated indexes of mental workload that better correlated with the objective time for task completion compared to the two selected instruments. These findings support the research question thereby demonstrating how defeasible argumentation theory can be successfully adopted to support the representation of mental workload and to enhance the quality of its assessments. The main contribution of this thesis is the presentation of a methodology, developed as a formal modular framework, to represent mental workload as a defeasible computational concept and to assess it as a numerical usable index. This research contributes to the body of knowledge by providing a modular framework built upon defeasible reasoning and formalised through argumentation theory in which workload can be optimally measured, analysed, explained and applied in different contexts

    A Curious Dialogical Logic and Its Composition Problem

    Get PDF
    Dialogue semantics for logic are two-player logic games between a Proponent who puts forward a logical formula φ as valid or true and an Opponent who disputes this. An advantage of the dialogical approach is that it is a uniform framework from which different logics can be obtained through only small variations of the basic rules. We introduce the composition problem for dialogue games as the problem of resolving, for a set S of rules for dialogue games, whether the set of S-dialogically valid formulas is closed under modus ponens. Solving the composition problem is fundamental for the dialogical approach to logic; despite its simplicity, it often requires an indirect solution with the help of significant logical machinery such as cut-elimination. Direct solutions to the composition problem can, however, sometimes be had. As an example, we give a set N of dialogue rules which is well-justified from the dialogical point of view, but whose set N of dialogically valid formulas is both non-trivial and non-standard. We prove that the composition problem for N can be solved directly, and introduce a tableaux system for N

    Towards Paraconsistent Inquiry

    Get PDF
    In this paper, we discuss Hintikka’s theory of interrogative approach to inquiry with a focus on bracketing. First, we dispute the use of bracketing in the interrogative model of inquiry arguing that bracketing provides an indispensable component of an inquiry. Then, we suggest a formal system based on strategy logic and logic of paradox to describe the epistemic aspects of an inquiry, and obtain a naturally paraconsistent system. We then apply our framework to some cases to illustrate its use

    The two stories of the habitus/structure relation and the riddle of reflexivity: A meta‐theoretical reappraisal

    Get PDF
    This article argues that two key puzzles arising from the theories of Bourdieu are inter-related. One is the question of how Bourdieu analyses the relationship between structure and habitus, and the other is the place of reflexivity in Bourdieu's work. We contend that it is only by carefully analysing Bourdieu's theoretical structure to grasp the relationship between these elements that one can understand whether or not his work offers useful resources for analysing the relation between routine action and self-reflection. This paper argues that there are two narrations of the structure/habitus relation in Bourdieu's work, and that the concept of self-reflective subjectivity is a residual element of the first narration and does not appear in the second. We then contend that this residual and under-developed concept of self-reflective subjectivity should not be confused with Bourdieu's analysis of epistemic reflexivity. These moves allow us to contribute to ongoing debates about the relation between routine action and self-reflection by arguing that the concept of the “reflexive habitus” – which some have argued is characteristic of social agents in high/late modernity – is both conceptually confused and is not a logical extension of Bourdieu's theories. In this way we try to clear the ground for more productive ways of thinking about routine action and self-reflection

    Epistemic evaluation in the context of pursuit and in the argumentative approach to methodology

    Get PDF
    corecore