23,903 research outputs found

    Multi-Source Multi-View Clustering via Discrepancy Penalty

    Full text link
    With the advance of technology, entities can be observed in multiple views. Multiple views containing different types of features can be used for clustering. Although multi-view clustering has been successfully applied in many applications, the previous methods usually assume the complete instance mapping between different views. In many real-world applications, information can be gathered from multiple sources, while each source can contain multiple views, which are more cohesive for learning. The views under the same source are usually fully mapped, but they can be very heterogeneous. Moreover, the mappings between different sources are usually incomplete and partially observed, which makes it more difficult to integrate all the views across different sources. In this paper, we propose MMC (Multi-source Multi-view Clustering), which is a framework based on collective spectral clustering with a discrepancy penalty across sources, to tackle these challenges. MMC has several advantages compared with other existing methods. First, MMC can deal with incomplete mapping between sources. Second, it considers the disagreements between sources while treating views in the same source as a cohesive set. Third, MMC also tries to infer the instance similarities across sources to enhance the clustering performance. Extensive experiments conducted on real-world data demonstrate the effectiveness of the proposed approach

    Joint Projection Learning and Tensor Decomposition Based Incomplete Multi-view Clustering

    Full text link
    Incomplete multi-view clustering (IMVC) has received increasing attention since it is often that some views of samples are incomplete in reality. Most existing methods learn similarity subgraphs from original incomplete multi-view data and seek complete graphs by exploring the incomplete subgraphs of each view for spectral clustering. However, the graphs constructed on the original high-dimensional data may be suboptimal due to feature redundancy and noise. Besides, previous methods generally ignored the graph noise caused by the inter-class and intra-class structure variation during the transformation of incomplete graphs and complete graphs. To address these problems, we propose a novel Joint Projection Learning and Tensor Decomposition Based method (JPLTD) for IMVC. Specifically, to alleviate the influence of redundant features and noise in high-dimensional data, JPLTD introduces an orthogonal projection matrix to project the high-dimensional features into a lower-dimensional space for compact feature learning.Meanwhile, based on the lower-dimensional space, the similarity graphs corresponding to instances of different views are learned, and JPLTD stacks these graphs into a third-order low-rank tensor to explore the high-order correlations across different views. We further consider the graph noise of projected data caused by missing samples and use a tensor-decomposition based graph filter for robust clustering.JPLTD decomposes the original tensor into an intrinsic tensor and a sparse tensor. The intrinsic tensor models the true data similarities. An effective optimization algorithm is adopted to solve the JPLTD model. Comprehensive experiments on several benchmark datasets demonstrate that JPLTD outperforms the state-of-the-art methods. The code of JPLTD is available at https://github.com/weilvNJU/JPLTD.Comment: IEEE Transactions on Neural Networks and Learning Systems, 202

    Multi-view constrained clustering with an incomplete mapping between views

    Full text link
    Multi-view learning algorithms typically assume a complete bipartite mapping between the different views in order to exchange information during the learning process. However, many applications provide only a partial mapping between the views, creating a challenge for current methods. To address this problem, we propose a multi-view algorithm based on constrained clustering that can operate with an incomplete mapping. Given a set of pairwise constraints in each view, our approach propagates these constraints using a local similarity measure to those instances that can be mapped to the other views, allowing the propagated constraints to be transferred across views via the partial mapping. It uses co-EM to iteratively estimate the propagation within each view based on the current clustering model, transfer the constraints across views, and then update the clustering model. By alternating the learning process between views, this approach produces a unified clustering model that is consistent with all views. We show that this approach significantly improves clustering performance over several other methods for transferring constraints and allows multi-view clustering to be reliably applied when given a limited mapping between the views. Our evaluation reveals that the propagated constraints have high precision with respect to the true clusters in the data, explaining their benefit to clustering performance in both single- and multi-view learning scenarios

    Structure fusion based on graph convolutional networks for semi-supervised classification

    Full text link
    Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks
    • …
    corecore