421 research outputs found

    Incomplete SMT techniques for solving non-linear formulas over the integers

    Get PDF
    We present new methods for solving the Satisfiability Modulo Theories problem over the theory of QuantifierFree Non-linear Integer Arithmetic, SMT(QF-NIA), which consists of deciding the satisfiability of ground formulas with integer polynomial constraints. Following previous work, we propose to solve SMT(QF-NIA) instances by reducing them to linear arithmetic: non-linear monomials are linearized by abstracting them with fresh variables and by performing case splitting on integer variables with finite domain. For variables that do not have a finite domain, we can artificially introduce one by imposing a lower and an upper bound and iteratively enlarge it until a solution is found (or the procedure times out). The key for the success of the approach is to determine, at each iteration, which domains have to be enlarged. Previously, unsatisfiable cores were used to identify the domains to be changed, but no clue was obtained as to how large the new domains should be. Here, we explain two novel ways to guide this process by analyzing solutions to optimization problems: (i) to minimize the number of violated artificial domain bounds, solved via a Max-SMT solver, and (ii) to minimize the distance with respect to the artificial domains, solved via an Optimization Modulo Theories (OMT) solver. Using this SMT-based optimization technology allows smoothly extending the method to also solve Max-SMT problems over non-linear integer arithmetic. Finally, we leverage the resulting Max-SMT(QF-NIA) techniques to solve ∃∀ formulas in a fragment of quantified non-linear arithmetic that appears commonly in verification and synthesis applications.Peer ReviewedPostprint (author's final draft

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    On Counterexample Guided Quantifier Instantiation for Synthesis in CVC4

    Full text link
    We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided techniques for quantifier instantiation that we use to make finding such proofs practically feasible. A particularly important class of specifications are single-invocation properties, for which we present a dedicated algorithm. To support syntax restrictions on generated solutions, our approach can transform a solution found without restrictions into the desired syntactic form. As an alternative, we show how to use evaluation function axioms to embed syntactic restrictions into constraints over algebraic datatypes, and then use an algebraic datatype decision procedure to drive synthesis. Our experimental evaluation on syntax-guided synthesis benchmarks shows that our implementation in the CVC4 SMT solver is competitive with state-of-the-art tools for synthesis

    Formalization and Validation of Safety-Critical Requirements

    Full text link
    The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and satisfiability modulo theory. We applied this technology within an industrial project to the validation of railways requirements

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    Automatic generation of loop invariants

    Get PDF
    CppInv works in two stages. Firstly, it parses a source code written in a subset of C++ and abstracts all execution paths of the program building a control flow graph associated to a transition system. Paths are expressed as arbitrary propositional formulas over linear integer arithmetic including high level operators like integer division and modulo. That makes easy the initial modeling. Later, formulas are normalized and only paths between a set of locations that cover every cycle of the control flow graph are regarded. Secondly, CppInv generates linear invariants at the selected locations setting out a constraint solving problem. We present a method to discover all linear invariant of the considered form. As a result, our tool can find linear invariants efficiently for a large set of interesting programs. Moreover, CppInv is also able to generate some non-linear invariants automatically. For instance, it is possible to prove the total correctness of a program that multiplies two integers from the invariants returned by the tool
    • …
    corecore