9,711 research outputs found

    Finite random coverings of one-complexes and the Euler characteristic

    Full text link
    This article presents an algebraic topology perspective on the problem of finding a complete coverage probability of a one dimensional domain XX by a random covering, and develops techniques applicable to the problem beyond the one dimensional case. In particular we obtain a general formula for the chance that a collection of finitely many compact connected random sets placed on XX has a union equal to XX. The result is derived under certain topological assumptions on the shape of the covering sets (the covering ought to be {\em good}, which holds if the diameter of the covering elements does not exceed a certain size), but no a priori requirements on their distribution. An upper bound for the coverage probability is also obtained as a consequence of the concentration inequality. The techniques rely on a formulation of the coverage criteria in terms of the Euler characteristic of the nerve complex associated to the random covering.Comment: 25 pages,2 figures; final published versio

    Enumerating Colorings, Tensions and Flows in Cell Complexes

    Get PDF
    We study quasipolynomials enumerating proper colorings, nowhere-zero tensions, and nowhere-zero flows in an arbitrary CW-complex XX, generalizing the chromatic, tension and flow polynomials of a graph. Our colorings, tensions and flows may be either modular (with values in Z/kZ\mathbb{Z}/k\mathbb{Z} for some kk) or integral (with values in {−k+1,…,k−1}\{-k+1,\dots,k-1\}). We obtain deletion-contraction recurrences and closed formulas for the chromatic, tension and flow quasipolynomials, assuming certain unimodularity conditions. We use geometric methods, specifically Ehrhart theory and inside-out polytopes, to obtain reciprocity theorems for all of the aforementioned quasipolynomials, giving combinatorial interpretations of their values at negative integers as well as formulas for the numbers of acyclic and totally cyclic orientations of XX.Comment: 28 pages, 3 figures. Final version, to appear in J. Combin. Theory Series

    Euler Characteristics of Categories and Homotopy Colimits

    Get PDF
    In a previous article, we introduced notions of finiteness obstruction, Euler characteristic, and L^2-Euler characteristic for wide classes of categories. In this sequel, we prove the compatibility of those notions with homotopy colimits of I-indexed categories where I is any small category admitting a finite I-CW-model for its I-classifying space. Special cases of our Homotopy Colimit Formula include formulas for products, homotopy pushouts, homotopy orbits, and transport groupoids. We also apply our formulas to Haefliger complexes of groups, which extend Bass--Serre graphs of groups to higher dimensions. In particular, we obtain necessary conditions for developability of a finite complex of groups from an action of a finite group on a finite category without loops.Comment: 44 pages. This final version will appear in Documenta Mathematica. Remark 8.23 has been improved, discussion of Grothendieck construction has been slightly expanded at the beginning of Section 3, and a few other minor improvements have been incoporate

    Free resolutions via Gr\"obner bases

    Full text link
    For associative algebras in many different categories, it is possible to develop the machinery of Gr\"obner bases. A Gr\"obner basis of defining relations for an algebra of such a category provides a "monomial replacement" of this algebra. The main goal of this article is to demonstrate how this machinery can be used for the purposes of homological algebra. More precisely, our approach goes in three steps. First, we define a combinatorial resolution for the monomial replacement of an object. Second, we extract from those resolutions explicit representatives for homological classes. Finally, we explain how to "deform" the differential to handle the general case. For associative algebras, we recover a well known construction due to Anick. The other case we discuss in detail is that of operads, where we discover resolutions that haven't been known previously. We present various applications, including a proofs of Hoffbeck's PBW criterion, a proof of Koszulness for a class of operads coming from commutative algebras, and a homology computation for the operads of Batalin--Vilkovisky algebras and of Rota--Baxter algebras.Comment: 34 pages, 4 figures. v2: added references to the work of Drummond-Cole and Vallette. v3: added an explicit description of homology classes in the monomial case and more examples, re-structured the exposition to achieve more clarity. v4: changed the presentation of the main construction to make it clearer, added another example (a computation of the bar homology of Rota--Baxter algebras

    Quillen homology for operads via Gr\"obner bases

    Full text link
    The main goal of this paper is to present a way to compute Quillen homology of operads. The key idea is to use the notion of a shuffle operad we introduced earlier; this allows to compute, for a symmetric operad, the homology classes and the shape of the differential in its minimal model, although does not give an insight on the symmetric groups action on the homology. Our approach goes in several steps. First, we regard our symmetric operad as a shuffle operad, which allows to compute its Gr\"obner basis. Next, we define a combinatorial resolution for the "monomial replacement" of each shuffle operad (provided by the Gr\"obner bases theory). Finally, we explain how to "deform" the differential to handle every operad with a Gr\"obner basis, and find explicit representatives of Quillen homology classes for a large class of operads. We also present various applications, including a new proof of Hoffbeck's PBW criterion, a proof of Koszulness for a class of operads coming from commutative algebras, and a homology computation for the operads of Batalin-Vilkovisky algebras and of Rota-Baxter algebras.Comment: 41 pages, this paper supersedes our previous preprint arXiv:0912.4895. Final version, to appear in Documenta Mat
    • …
    corecore