455,617 research outputs found

    Inclusion problems for one-counter systems

    Get PDF
    We study the decidability and complexity of verification problems for infinite-state systems. A fundamental question in formal verification is if the behaviour of one process is reproducible by another. This inclusion problem can be studied for various models of computation and behavioural preorders. It is generally intractable or even undecidable already for very limited computational models. The aim of this work is to clarify the status of the decidability and complexity of some well-known inclusion problems for suitably restricted computational models. In particular, we address the problems of checking strong and weak simulation and trace inclusion for processes definable by one-counter automata (OCA), that consist of a finite control and a single counter ranging over the non-negative integers. We take special interest of the subclass of one-counter nets (OCNs), that cannot fully test the counter for zero and which is subsumed both by pushdown automata and Petri nets / vector addition systems. Our new results include the PSPACE-completeness of strong and weak simulation, and the undecidability of trace inclusion for OCNs. Moreover, we consider semantic preorders between OCA/OCN and finite systems and close some gaps regarding their complexity. Finally, we study deterministic processes, for which simulation and trace inclusion coincide

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    Tightening the Complexity of Equivalence Problems for Commutative Grammars

    Get PDF
    We show that the language equivalence problem for regular and context-free commutative grammars is coNEXP-complete. In addition, our lower bound immediately yields further coNEXP-completeness results for equivalence problems for communication-free Petri nets and reversal-bounded counter automata. Moreover, we improve both lower and upper bounds for language equivalence for exponent-sensitive commutative grammars.Comment: 21 page

    Validation of the performance of the Aquantic 2100A fish counter

    Get PDF
    This report looks at the validation of the performance of the Logie 2100A fish counter which was carried out at Forge Weir (River Lune) and Gunnislake Fish Pass (River Tamar), using a video recording system

    Data Sketches for Disaggregated Subset Sum and Frequent Item Estimation

    Full text link
    We introduce and study a new data sketch for processing massive datasets. It addresses two common problems: 1) computing a sum given arbitrary filter conditions and 2) identifying the frequent items or heavy hitters in a data set. For the former, the sketch provides unbiased estimates with state of the art accuracy. It handles the challenging scenario when the data is disaggregated so that computing the per unit metric of interest requires an expensive aggregation. For example, the metric of interest may be total clicks per user while the raw data is a click stream with multiple rows per user. Thus the sketch is suitable for use in a wide range of applications including computing historical click through rates for ad prediction, reporting user metrics from event streams, and measuring network traffic for IP flows. We prove and empirically show the sketch has good properties for both the disaggregated subset sum estimation and frequent item problems. On i.i.d. data, it not only picks out the frequent items but gives strongly consistent estimates for the proportion of each frequent item. The resulting sketch asymptotically draws a probability proportional to size sample that is optimal for estimating sums over the data. For non i.i.d. data, we show that it typically does much better than random sampling for the frequent item problem and never does worse. For subset sum estimation, we show that even for pathological sequences, the variance is close to that of an optimal sampling design. Empirically, despite the disadvantage of operating on disaggregated data, our method matches or bests priority sampling, a state of the art method for pre-aggregated data and performs orders of magnitude better on skewed data compared to uniform sampling. We propose extensions to the sketch that allow it to be used in combining multiple data sets, in distributed systems, and for time decayed aggregation
    • 

    corecore