4,723 research outputs found

    Pedestrian steering behaviour modelling within the built environment

    Full text link
    Prediction of pedestrians’ steering behaviours within the built environments under normal and non-panic situations is useful for a wide range of applications, which include social science, psychology, architecture, and computer graphics. The main focus is on prediction of the pedestrian walking paths and the influences from the surrounding environment from the engineering point of view

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    A Review of Near-Collision Driver Behavior Models

    Get PDF
    Objective: This article provides a review of recent models of driver behavior in on-road collision situations. Background: In efforts to improve traffic safety, computer simulation of accident situations holds promise as a valuable tool, for both academia and industry. However, to ensure the validity of simulations, models are needed that accurately capture near-crash driver behavior, as observed in real traffic or driving experiments.<p> Method: Scientific articles were identified by a systematic approach, including extensive database searches. Criteria for inclusion were defined and applied, including the requirement that models should have been previously applied to simulate on-road collision avoidance behavior. Several selected models were implemented and tested in selected scenarios.<p> Results: The reviewed articles were grouped according to a rough taxonomy based on main emphasis, namely avoidance by braking, avoidance by steering, avoidance by a combination of braking and steering, effects of driver states and characteristics on avoidance, and simulation platforms.<p> Conclusion: A large number of near-collision driver behavior models have been proposed. Validation using human driving data has often been limited, but exceptions exist. The research field appears fragmented, but simulation-based comparison indicates that there may be more similarity between models than what is apparent from the model equations. Further comparison of models is recommended.<p> Application: This review provides traffic safety researchers with an overview of the field of driver models for collision situations. Specifically, researchers aiming to develop simulations of on-road collision accident situations can use this review to find suitable starting points for their work

    A Predictive Fuzzy-Neural Autopilot for the Guidance of Small Motorised Marine Craft

    Get PDF
    This thesis investigates the design and evaluation of a control system, that is able to adapt quickly to changes in environment and steering characteristics. This type of controller is particularly suited for applications with wide-ranging working conditions such as those experienced by small motorised craft. A small motorised craft is assumed to be highly agile and prone to disturbances, being thrown off-course very easily when travelling at high speed 'but rather heavy and sluggish at low speeds. Unlike large vessels, the steering characteristics of the craft will change tremendously with a change in forward speed. Any new design of autopilot needs to be to compensate for these changes in dynamic characteristics to maintain near optimal levels of performance. This study identities the problems that need to be overcome and the variables involved. A self-organising fuzzy logic controller is developed and tested in simulation. This type of controller learns on-line but has certain performance limitations. The major original contribution of this research investigation is the development of an improved self-adaptive and predictive control concept, the Predictive Self-organising Fuzzy Logic Controller (PSoFLC). The novel feature of the control algorithm is that is uses a neural network as a predictive simulator of the boat's future response and this network is then incorporated into the control loop to improve the course changing, as well as course keeping capabilities of the autopilot investigated. The autopilot is tested in simulation to validate the working principle of the concept and to demonstrate the self-tuning of the control parameters. Further work is required to establish the suitability of the proposed novel concept to other control

    An investigation of multibody system modelling and control analysis techniques for the development of advanced suspension systems in passenger cars

    Get PDF
    The subject of this thesis is the investigation of multibody system modelling and control analysis techniques for the development of advanced suspension systems in passenger cars. A review of the application of automatic control to all areas of automotive vehicles illustrated the important factors in such developments, including motivating influences, constraints and methodologies used. A further review of specific applications for advanced suspension systems highlighted a major discrepancy between the significant claims of theoretical performance benefits and the scarcity of successful practical implementations. This discrepancy was the result of idealistic analytical studies producing unrealistic solutions with little regard for practical constraints. The predominant application of prototype testing methods in implementation studies also resulted in reduced potential performance improvements. This work addressed this gap by the application of realistic modelling and control design techniques to practical realistic suspension systems. Multibody system modelling techniques were used to develop vehicle models incorporating realistic representations of the suspension system itself, with the ability to include models of the controllers, and facilitate control analysis tasks. These models were first used to address ride control for fully active suspension systems. Both state space techniques, including linear quadratic regulator and pole placement and frequency domain design methods were applied. For the multivariable frequency domain study, dyadic expansion techniques were used to decouple the system into single input single output systems representing each of the sprung mass modes. Both discretely and continuously variable damping systems were then addressed with a range of control strategies, including analytical solutions based on the active results and heuristic rule-based approaches. The controllers based on active solutions were reduced to satisfy realistic practical limitations of the achievable damping force. The heuristic techniques included standard rule-based controllers using Boolean logic for the discretely variable case, and fuzzy logic controllers for the continuously variable case

    Integration of Active Chassis Control Systems for Improved Vehicle Handling Performance

    Get PDF
    This thesis investigates the principle of integration of vehicle dynamics control systems by proposing a novel control architecture to integrate the brake-based electronic stability control (ESC), active front steering (AFS), normal suspension force control (NFC) and variable torque distribution (VTD). A nonlinear 14 degree of freedom passive vehicle dynamics model was developed in Matlab/Simulink and validated against commercially available vehicle dynamics software CarSim. Dynamics of the four active vehicle control systems were developed. Fuzzy logic and PID control strategies were employed considering their robustness and effectiveness in controlling nonlinear systems. Effectiveness of active systems in extending the vehicle operating range against the passive ones was investigated. From the research, it was observed that AFS is effective in improving the stability at lower lateral acceleration (latac) region with less interference to the longitudinal vehicle dynamics. But its ability diminishes at higher latac regions due to tyre lateral force saturation. Both ESC and VTD are found to be effective in stabilising the vehicle over the entire operating region. But the intrusive nature of ESC promotes VTD as a preferred stability control mechanism at the medium latac range. But ESC stands out in improving stability at limits where safety is of paramount importance. NFC is observed to improve the ability to generate the tyre forces across the entire operating range. Based on this analysis, a novel rule based integrated chassis control (ICC) strategy is proposed. It uses a latac based stability criterion to assign the authority to control the stability and ensures the smooth transition of the control authority amongst the three systems, AFS, VTD and ESC respectively. The ICC also optimises the utilisation of NFC to improve the vehicle handling performance further, across the entire operating regions. The results of the simulation are found to prove that the integrated control strategy improves vehicle stability across the entire vehicle operating region

    Data-driven models and trait-oriented experiments of aquatic macrophytes to support freshwater management

    Get PDF
    • 

    corecore