508 research outputs found

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam

    From transitive inference to exhaustive search: towards self-regulating models of developmental processes

    Get PDF

    Principles of Human Learning

    Get PDF
    What are the general principles that drive human learning in different situations? I argue that much of human learning can be understood with just three principles. These are generalization, adaptation, and simplicity. To verify this conjecture, I introduce a modeling framework based on the same principles. This framework combines the idea of meta-learning -- also known as learning-to-learn -- with the minimum description length principle. The models that result from this framework capture many aspects of human learning across different domains, including decision-making, associative learning, function learning, multi-task learning, and reinforcement learning. In the context of decision-making, they explain why different heuristic decision-making strategies emerge and how appropriate strategies are selected. The same models furthermore capture order effects found in associative learning, function learning and multi-task learning. In the reinforcement learning context, they resemble individual differences between human exploration strategies and explain empirical data better than any other strategy under consideration. The proposed modeling framework -- together with its accompanying empirical evidence -- may therefore be viewed as a first step towards the identification of a minimal set of principles from which all human behavior derives

    Reinforcement Learning Applied to Cognitive Space Communications

    Get PDF
    The future of space exploration depends on robust, reliable communication systems. As the number of such communication systems increase, automation is fast becoming a requirement to achieve this goal. A reinforcement learning solution can be employed as a possible automation method for such systems. The goal of this study is to build a reinforcement learning algorithm which optimizes data throughput of a single actor. A training environment was created to simulate a link within the NASA Space Communication and Navigation (SCaN) infrastructure, using state of the art simulation tools developed by the SCaN Center for Engineering, Networks, Integration, and Communications (SCENIC) laboratory at NASA Glenn Research Center to obtain the closest possible representation of the real operating environment. Reinforcement learning was then used to train an agent inside this environment to maximize data throughput. The simulation environment contained a single actor in low earth orbit capable of communicating with twenty-five ground stations that compose the Near-Earth Network (NEN). Initial experiments showed promising training results, so additional complexity was added by augmenting simulation data with link fading profiles obtained from real communication events with the International Space Station. A grid search was performed to find the optimal hyperparameters and model architecture for the agent. Using the results of the grid search, an agent was trained on the augmented training data. Testing shows that the agent performs well inside the training environment and can be used as a foundation for future studies with added complexity and eventually tested in the real space environment
    • …
    corecore