258 research outputs found

    Optical fiber sensors: a route from University of Kent to Portugal

    Get PDF
    In this work the authors first summarily describe the main topics that were the subject of their post-graduate activity in fiber sensing at the Applied Optics Group of University of Kent in the late 1980s and early 1990s. After their return to Porto, Portugal, the know-how acquired during their stay at Kent and the collaboration paths that followed between the University of Porto and University of Kent were instrumental in the start-up and progress of optical fiber sensing activity in Portugal. The main topics addressed in this field, the description of some of the relevant developments achieved in recent years, the present situation and the guidelines for the future research and development activity in Portugal in fiber sensing will be the core of this work.info:eu-repo/semantics/publishedVersio

    Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability

    Get PDF
    Author name used in this publication: H. Y. Tam2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Fiber bragg grating sensors for mainstream industrial processes

    Get PDF
    This paper reviews fiber Bragg grating sensing technology with respect to its use in mainstream industrial process applications. A review of the various types of sensors that have been developed for industries such as power generation, water treatment and services, mining, and the oil and gas sector has been performed. A market overview is reported as well as a discussion of some of the factors limiting their penetration into these markets. Furthermore, the author’s make recommendations for future work that would potentially provide significant opportunity for the advancement of fiber Bragg grating sensor networks in these mainstream industries

    Review of Fiber Optic Displacement Sensors

    Get PDF
    Displacement Measurements Are of Significant Importance in a Variety of Critical Scientific and Engineering Fields, Such as Gravitational Wave Detection, Geophysical Research, and Manufacturing Industries. Due to the Inherent Advantages Such as Compactness, High Sensitivity, and Immunity to Electromagnetic Interference, in Recent Years, Fiber Optic Sensors Have Been Widely Used in an Expansive Range of Sensing Applications, Ranging from Infrastructural Health Monitoring to Chemical and Biological Sensing. of Particular Interest Here, Fiber Optic Displacement Sensors Have Gained Wide Interest and Have Evolved from Basic Intensity Modulation-Based Configurations to More Advanced Structures, Such as Fiber Bragg Grating (FBG)-Based and Interferometric Configurations. This Article Reviews Specifically the Advanced Fiber Optic Displacement Sensing Techniques that Have Been Developed in the Past Two Decades. Details Regarding the Working Principle, Sensor Design, and Performance Measures of FBG-Based, Interferometers-Based (Including the Fabry-Perot Interferometer, the Michelson Interferometer, and the Multimode Interferometer), Microwave Photonics-Based, and Surface Plasmon Resonance-Based Fiber Optic Displacement Sensors Are Given. Challenges and Perspectives on Future Research in the Development of Practical and High-Temperature Tolerant Displacement Sensors Are Also Discussed

    Review of the Strain Modulation Methods Used in Fiber Bragg Grating Sensors

    Get PDF
    Fiber Bragg grating (FBG) is inherently sensitive to temperature and strain. By modulating FBG’s strain, various FBG sensors have been developed, such as sensors with enhanced or reduced temperature sensitivity, strain/displacement sensors, inclinometers, accelerometers, pressure meters, and magnetic field meters. This paper reviews the strain modulation methods used in these FBG sensors and categorizes them according to whether the strain of an FBG is changed evenly. Then, those even-strain-change methods are subcategorized into (1) attaching/embedding an FBG throughout to a base and (2) fixing the two ends of an FBG and (2.1) changing the distance between the two ends or (2.2) bending the FBG by applying a transverse force at the middle of the FBG. This review shows that the methods of “fixing the two ends” are prominent because of the advantages of large tunability and frequency modulation

    Optical Interferometric Force Sensor based on a Buckled Beam

    Get PDF
    This paper reports a novel extrinsic Fabry-Perot interferometer (EFPI)-based fiber optic sensor for force measurement. The prototype force sensor consists of two EFPIs mounted on a stainless-steel rectangular frame. The primary sensing element, i.e., the first EFPI, is formed between the endface of a horizontally placed optical fiber and a stainless-steel buckled beam. The second EFPI, fashioned between a longitudinally placed optical fiber and a silver-coated glass beam, is arranged to demonstrate the amplification mechanism of the buckled beam structure. When the sensor is subjected to a tension force, the pre-buckled beam will deflect backward, resulting in a longitudinal/axial displacement of the pre-buckled beam. The axial displacement is further transferred and amplified to a horizontal/vertical deflection at the middle of the buckled beam, leading to a relatively significant change in the Fabry-Perot cavity length. A force sensitivity of 796 nm/ {N} (change in cavity length/Newton) is achieved with a low-temperature dependence of 0.005 {N} /°C. The stability of the sensor is also investigated with a standard deviation of ± 5 nm, corresponding to a measurement resolution of ±0.0064 N. A simulation is conducted to study the axial displacement and stress distribution of the sensor when it is subjected to a tension load of 250 N. It is demonstrated that the maximum stress of the sensor is tremendously reduced attributed to the buckled design, enabling a long service life cycle of the force sensor. The robust and simple-to-manufacture force sensor has great potential in structural health monitoring, robotics control, and oil/ gas refining systems

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Review on Strain Monitoring of Aircraft Using Optical Fibre Sensor

    Get PDF
    Structural health monitoring of aircraft assures safety, integrity and reduces cost-related concerns by reducing the number of times maintenance is required. Under aerodynamic loading, aircraft is subjected to strain, in turn causing damage and breakdown. This paper presents a review of experimental works, which focuses on monitoring strain of various parts of aircraft using optical fibre sensors. In addition, this paper presents a discussion and review on different types of optical fibre sensors used for structural health monitoring (SHM) of aircraft. However, the focus of this paper is on fibre bragg gratings (FBGs) for strain monitoring.  Here, FBGs are discussed in detail because they have proved to be most viable and assuring technology in this field. In most cases of strain monitoring, load conditioning and management employs finite element method (FEM). However, more effort is still required in finding the accurate positions in real time where the sensors can be placed in the structure and responds under complex deformation

    Permanently-Installed Distributed Pressure Sensors for Downhole Applications

    Get PDF
    Technology advancements (e.g., hydraulic fracturing and horizontal drilling) to recover unconventional oil and gas (UOG) resources are critical in maintaining future U.S. oil and gas production levels. Permanently installed distributed downhole pressure sensors could monitor fracture propagation, assess the effectiveness of hydraulic fracturing, and optimize hydraulic fracturing placement so that overall UOG recovery efficiency can be increased. However, the harsh environment (high temperatures, high pressures, strong vibration, and presence of brine, mud, debris, hydrate, and various gases), the long data telemetry distance, and the requirements of reliability and service lifetime make the downhole monitoring a very challenging task. To combat these challenges, this thesis presents three sensing systems for downhole pressure monitoring. First, A microwave-photonic low-coherence interferometry (MPLCI) system is proposed for optical fiber based distributed sensing. The system can be used to interrogate the intrinsic Fabry–PĂ©rot interferometers (IFPIs) based distributed downhole pressure sensors. Assisted by an unbalanced Michelson interferometer (MI), a low-coherence laser source is used to interrogate IFPIs along with an optical fiber for a dark zone-free (or spatially continuous) distributed measurement. By combining the advantages of microwaves and photonics, the MPLCI system can synergistically achieve high sensitivity and high spatial resolution. Second, to solve the packaging and drift problems in optical fiber sensors, an all-digital sensing method based on an electrical encoder is developed for downhole pressure monitoring. The key innovation of the all-digital sensor concept is the built-in nonelectric analog-to-digital converter (ADC), which eliminates the need for downhole electronics for signal conditioning and telemetry in conventional electrical downhole sensors. As such, the sensors are more robust, less expensive, and have less drift in comparison with the existing sensors. Because the sensor outputs are digital in nature, the developed sensors can be remotely logged over a long distance, and many sensors can be digitally multiplexed for distributed sensing using a single surface instrument. The all-digital pressure sensors and their surface instrument were designed, engineered, fabricated, and calibrated. The integrated sensing system was tested/validated at both laboratory and research wellbores. Third, to solve the hysteresis problem induced by the electrical encoder, a non-contact optical encoder based all-digital pressure sensor for downhole applications is proposed. The proposed sensor combines the advantages of both optical fiber and all-digital sensing method. The noncontact-type encoder, which is composed of an encoding pad and an all-glass optical fiber sensing head. A glass additive and subtractive manufacturing (ASM) system was used to embed the multi-channel optical fibers into a bulk-fused silica glass substrate with high positioning accuracy and good thermal stability even at elevated temperatures. The optical fiber only serves as the telemetry channel to directly transmit the data in digital format, such that the system has long-distance telemetry capability as well as low drift. The proposed pressure sensor was manufactured and experimentally verified to have a high SNR, linear pressure response, and good long-term stability. In addition, a mathematical model to study the relationships between the sensor’s performances and design parameters was established
    • 

    corecore