2,172 research outputs found

    Non-parametric Methods for Automatic Exposure Control, Radiometric Calibration and Dynamic Range Compression

    Get PDF
    Imaging systems are essential to a wide range of modern day applications. With the continuous advancement in imaging systems, there is an on-going need to adapt and improve the imaging pipeline running inside the imaging systems. In this thesis, methods are presented to improve the imaging pipeline of digital cameras. Here we present three methods to improve important phases of the imaging process, which are (i) ``Automatic exposure adjustment'' (ii) ``Radiometric calibration'' (iii) ''High dynamic range compression''. These contributions touch the initial, intermediate and final stages of imaging pipeline of digital cameras. For exposure control, we propose two methods. The first makes use of CCD-based equations to formulate the exposure control problem. To estimate the exposure time, an initial image was acquired for each wavelength channel to which contrast adjustment techniques were applied. This helps to recover a reference cumulative distribution function of image brightness at each channel. The second method proposed for automatic exposure control is an iterative method applicable for a broad range of imaging systems. It uses spectral sensitivity functions such as the photopic response functions for the generation of a spectral power image of the captured scene. A target image is then generated using the spectral power image by applying histogram equalization. The exposure time is hence calculated iteratively by minimizing the squared difference between target and the current spectral power image. Here we further analyze the method by performing its stability and controllability analysis using a state space representation used in control theory. The applicability of the proposed method for exposure time calculation was shown on real world scenes using cameras with varying architectures. Radiometric calibration is the estimate of the non-linear mapping of the input radiance map to the output brightness values. The radiometric mapping is represented by the camera response function with which the radiance map of the scene is estimated. Our radiometric calibration method employs an L1 cost function by taking advantage of Weisfeld optimization scheme. The proposed calibration works with multiple input images of the scene with varying exposure. It can also perform calibration using a single input with few constraints. The proposed method outperforms, quantitatively and qualitatively, various alternative methods found in the literature of radiometric calibration. Finally, to realistically represent the estimated radiance maps on low dynamic range display (LDR) devices, we propose a method for dynamic range compression. Radiance maps generally have higher dynamic range (HDR) as compared to the widely used display devices. Thus, for display purposes, dynamic range compression is required on HDR images. Our proposed method generates few LDR images from the HDR radiance map by clipping its values at different exposures. Using contrast information of each LDR image generated, the method uses an energy minimization approach to estimate the probability map of each LDR image. These probability maps are then used as label set to form final compressed dynamic range image for the display device. The results of our method were compared qualitatively and quantitatively with those produced by widely cited and professionally used methods

    Quanta Burst Photography

    Full text link
    Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons, and capturing their time-of-arrival with high timing precision. While these sensors were limited to single-pixel or low-resolution devices in the past, recently, large (up to 1 MPixel) SPAD arrays have been developed. These single-photon cameras (SPCs) are capable of capturing high-speed sequences of binary single-photon images with no read noise. We present quanta burst photography, a computational photography technique that leverages SPCs as passive imaging devices for photography in challenging conditions, including ultra low-light and fast motion. Inspired by recent success of conventional burst photography, we design algorithms that align and merge binary sequences captured by SPCs into intensity images with minimal motion blur and artifacts, high signal-to-noise ratio (SNR), and high dynamic range. We theoretically analyze the SNR and dynamic range of quanta burst photography, and identify the imaging regimes where it provides significant benefits. We demonstrate, via a recently developed SPAD array, that the proposed method is able to generate high-quality images for scenes with challenging lighting, complex geometries, high dynamic range and moving objects. With the ongoing development of SPAD arrays, we envision quanta burst photography finding applications in both consumer and scientific photography.Comment: A version with better-quality images can be found on the project webpage: http://wisionlab.cs.wisc.edu/project/quanta-burst-photography

    The Cord (February 9, 2011)

    Get PDF

    Dynamic multi-ramp metering control with simultaneous perturbation stochastic approximation (SPSA)

    Get PDF
    Ramp metering was proven to be a viable form of freeway traffic control strategy, which could eliminate, or at least reduce, freeway congestion. In this study, the development of ramp metering control strategies, models, and constraints (e.g., meter locations, ramp storage capacities, lower and upper bounds of ramp metering rates) are discussed in detail. The pre-timed and demand/capacity metering control strategies were first evaluated, while the potential metered ramps were determined. A Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is proposed to dynamically optimize multiple-ramp metering control by maximizing the total throughput subject to a number of constraints. The ramp metering rates subject to dynamic traffic conditions and capacity constraints are considered as decision variables in the SPSA algorithm. Based on the collected geometric and traffic data, a CORSIM model was developed to simulate traffic operation for the study site. The potential benefit of the dynamic multi-ramp metering control model under time varying traffic condition was simulated and evaluated. The increased total throughput and reduced total delay were observed, while the traffic conditions suitable for implementing ramp metering control were suggested. The developed dynamic multi-ramp metering control with SPSA algorithm has demonstrated its effectiveness to improve freeway operation

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 27)

    Get PDF
    Abstracts are provided for 92 patents and patent applications entered into the NASA scientific and technical information system during the period January 1985 through June 1985. Each entry consist of a citation, and abstract, and in most cases, a key illustration selected from the patent or patent application

    Apollo Lightcraft Project

    Get PDF
    The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems

    Mathematical Model and Cloud Computing of Road Network Operations under Non-Recurrent Events

    Get PDF
    Optimal traffic control under incident-driven congestion is crucial for road safety and maintaining network performance. Over the last decade, prediction and simulation of road traffic play important roles in network operation. This dissertation focuses on development of a machine learning-based prediction model, a stochastic cell transmission model (CTM), and an optimisation model. Numerical studies were performed to evaluate the proposed models. The results indicate that proposed models are helpful for road management during road incidents

    Technical Translation: A Translation Proposal for a Photography Guide

    Get PDF
    My objective of this thesis is to propose a technical translation from English into Italian of a photography user guide in order to highlight the main challenges a technical translator may face while translating such a complex genre of writing. The source text I have decided to translate is a section taken from David Busch’s Canon EOS 80d Guide to Digital SLR Photography and focused on photography exposure. Explaining the functions of the camera’s basic controls and relating each feature to specific photographic techniques or situations, this guide provides step by step directions to learn how to use this camera properly. My idea for this work was born from both my growing interest in translation and in digital photography, a specialised field which I have always been passionate about. First, I will give a definition of what technical translation is, explaining the difference between Scientific and Technical translation, contrasting some misconceptions about technical translation and proving its importance. In order to understand how translation theory could be useful in technical translation, I will give an overview of some of its approaches and finally, I will deal with the most important features of the technical discourse. Before proposing the actual translation, the second chapter will open with an analysis of the camera user guide, which describes the intended readers, purpose, textual organization, language and register. Subsequently, I will introduce my translation method, based on the creation of a corpus and of a glossary that were used as a reference during the translation process. My thesis concludes with a commentary on the translation: I will start from some considerations about terminology, register and textual organization, to finish with some observations about cultural specificity, in order to outline the different strategies that were adopted to face some difficulties encountered during the translation process.My objective of this thesis is to propose a technical translation from English into Italian of a photography user guide in order to highlight the main challenges a technical translator may face while translating such a complex genre of writing. The source text I have decided to translate is a section taken from David Busch’s Canon EOS 80d Guide to Digital SLR Photography and focused on photography exposure. Explaining the functions of the camera’s basic controls and relating each feature to specific photographic techniques or situations, this guide provides step by step directions to learn how to use this camera properly. My idea for this work was born from both my growing interest in translation and in digital photography, a specialised field which I have always been passionate about. First, I will give a definition of what technical translation is, explaining the difference between Scientific and Technical translation, contrasting some misconceptions about technical translation and proving its importance. In order to understand how translation theory could be useful in technical translation, I will give an overview of some of its approaches and finally, I will deal with the most important features of the technical discourse. Before proposing the actual translation, the second chapter will open with an analysis of the camera user guide, which describes the intended readers, purpose, textual organization, language and register. Subsequently, I will introduce my translation method, based on the creation of a corpus and of a glossary that were used as a reference during the translation process. My thesis concludes with a commentary on the translation: I will start from some considerations about terminology, register and textual organization, to finish with some observations about cultural specificity, in order to outline the different strategies that were adopted to face some difficulties encountered during the translation process
    corecore