5,424 research outputs found

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    Incidences between points and lines in three dimensions

    Get PDF
    We give a fairly elementary and simple proof that shows that the number of incidences between mm points and nn lines in R3{\mathbb R}^3, so that no plane contains more than ss lines, is O(m1/2n3/4+m2/3n1/3s1/3+m+n) O\left(m^{1/2}n^{3/4}+ m^{2/3}n^{1/3}s^{1/3} + m + n\right) (in the precise statement, the constant of proportionality of the first and third terms depends, in a rather weak manner, on the relation between mm and nn). This bound, originally obtained by Guth and Katz~\cite{GK2} as a major step in their solution of Erd{\H o}s's distinct distances problem, is also a major new result in incidence geometry, an area that has picked up considerable momentum in the past six years. Its original proof uses fairly involved machinery from algebraic and differential geometry, so it is highly desirable to simplify the proof, in the interest of better understanding the geometric structure of the problem, and providing new tools for tackling similar problems. This has recently been undertaken by Guth~\cite{Gu14}. The present paper presents a different and simpler derivation, with better bounds than those in \cite{Gu14}, and without the restrictive assumptions made there. Our result has a potential for applications to other incidence problems in higher dimensions

    On distinct distances in homogeneous sets in the Euclidean space

    Full text link
    A homogeneous set of nn points in the dd-dimensional Euclidean space determines at least Ω(n2d/(d2+1)/logc(d)n)\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n) distinct distances for a constant c(d)>0c(d)>0. In three-space, we slightly improve our general bound and show that a homogeneous set of nn points determines at least Ω(n.6091)\Omega(n^{.6091}) distinct distances
    corecore